MobiLab@uni.lu

University of Luxembourg

Multilingual. Personalised. Connected.

Transport and Mobility in Luxembourg

UNIVERSITÉ DU LUXEMBOURG

- Luxembourg strong monocentric country
- 320 000 commuters; 160 000 cross-borders;
- 76% car users (89% from outside); #1 car ownership rate in EU

Traffic congestion in Luxembourg

MobiLab @ University of Luxembourg

- Transport Research Group within Engineering Unit since 2012
- International and interdisciplinary team
 - Head: Prof. dr. Ing. Francesco Viti
 - MSc Univ. of Naples 'Federico II', Civil Engineering degree
 - PhD TU Delft, PhD in transportation planning and management
 - Post-doc TU Delft (2007-2008) & Ku Leuven (2007 2012)
 - 1 (part time) post doc
 - Sebastien Faye, computer scientist
 - 3 PhD students
 - Francois Sprumont, spatial planner
 - Guido Cantelmo, transport engineer
 - Bogdan Toader, computer scientist
 - Incoming
 - PhD position 1: Giorgos Laskaris, traffic engineer (Jan. '16)
 - Post doc Marco Rinaldi, automation and control (Mar 2016)
 - PhD position 2 to be filled, transport engineer (Summer '16)

Research at MobiLab: multimodal, multiscale, multi-data

yni h

Collaborations

Within UL

Computer Science & SnT

- NetLab (VehicularLab, IGNITE) travel assistance systems, (Big) data and mobility, Gaming
- AutomationLab autonomous driving, vision and image processing

Social Sciences (FLSHASE)

- IPSE Activity-travel behavior, mobility planning & management, transport policy research
- HCI-usability Lab Human Factors, Human Computer Interface
- Outside UL
 - Luxembourg
 - Luxembourg Institute of Science and Technologies (LIST)
 - Luxembourg Institute of Socio-Economic Research (LISER)
 - Stakeholders (Ministries of Economy, Infrastructure, Sustainable Development, PT operators, Infomobility,...)
 - International
 - KU Leuven
 - TU Delft
 - Universities of Rome 'La Sapienza' & 'Tre'
 - KTH

1. Speed and travel time profiles and distributions from mobile sensors

For Route Planning

Overview

- Introduction
 - IBBT Project MobiRoute
- Basic info of FCD technology adopted
 - Coverage requirements
 - Quality requirements
 - Converting point-based data into travel times
- Data conversion and cleansing
 - Detecting and removing biases and errors
 - Handling data correlations
- Data analysis
- Closure

Multimodal Route Planning

MobiRoute - Mobility & Routing

- IBBT ICON funding for June 2009 June 2011
- Aim: develop a <u>dynamic</u> and <u>robust</u> route planner using historical traffic data and other metadata (eg weather) for multimodal (car+train) trips.
- Achievements:
 - Unique dataset containing both floating car data (Be-Mobile) and real time train data (DUO);
 - High-performance web-based multimodal route-planner with robust routing (UGent);
 - Use of advanced statistics to obtain reliable predictions of speeds and travel times (KUL)
 - Spin-off company <u>Go-Mobile</u> as mean between info providers and services (Be-Mobile, SNCB, De Lijn, ...)

Robust routing

Proposed definition:

Given an origin-destination pair, and a certain arrival (or departure) time period, display the *k* best routes (if exist) such that:

- 1. The mean travel time does not exceed *a*-times the average travel time of the shortest route during the same time interval
- 2. Given a certain α probability value, the travel time of the route is at maximum *b*-times its free flow travel time with α probability.

→ Route travel time histograms needed!

Floating Car Data technology

- Advantages
 - Provides full routes travel time data
 - Low installation/maintenance costs
 - Sample sizes grow with density and congestion levels
- Disadvantages
 - Scalability, coverage
 - Biases, not necessarily tracing vehicles (e.g., GSM of pedestrians, bikers)
- Typical fleets
 - Taxis, Busses, Commercial vehicles (lorries, trucks,....)
 - Miscellaneous of different types (eg. Be-Mobile's)

From FCD to traffic info & routing applications

- Accurate space-time plots reproduced from individual trajectories
- Congested sections traced in small time updates

FCD for traffic estimation

- Floating Car Data
 - By nature trip/route based information
 - Can cover 'virtually' all links
- State estimation highly sensitive to sample sizes
- Travel time more representative wrt speed, density, flow,...
- Interpretation issues
 - Low speeds can be interpreted as congestion, parking maneuvers, etc.
 - Tracing activity patterns not possible (e.g., pickup & delivery operations)
 - New generation -> X-FCD

Data coverage issues

UNIVERSITÉ DU LUXEMBOURG

- Spatial and temporal coverage:
 - The discrete nature affects the completeness of travel time statistics.
 - Route data might not be available at the time requested because
 - it is insufficient in number or,
 - it does not cover all links or routes in the network, or
 - Data may be available only for parts of the route;
 - Part of the data may be missing (e.g. tunnels).
- Minimum number of probes needed depends on
 - Application (real time info, data analysis, traffic management,...)
 - Aggregation time (1 -> 5 mins)
 - Sampling frequency (10Hz -> 1 min)

Relationship between link travel time estimation error, aggregation time and sample size (from Jiang et al., 2006)

Data quality issues

- Quality depends on three main aspects:
 - Data acquisition and formatting operations
 - Aggregation
 - Interpolation
 - Conversion to link/path statistics
 - Data completion and smoothing
 - missing data both in time and space,
 - remove (white) noise;
 - Data cleansing
 - remove or correct corrupted or systematic errors
 - identify biases (observation biases, sampling biases, detection lags,...)

MobiRoute coverage

Providing robust info & routing

- Travel time prediction algorithm based on Floating Car Data
- Data-driven approach for mid-term forecast
- Statistics based on historical data
- Test accuracy of predictions when extracting data by
 - Daily patterns
 - Weekly patterns
 - Seasonal patterns
 - ...
- Other metadata included in further improved versions (weather, working zones,...)

Travel time prediction issues

- Combining historical data:
 - How far in the past should we look back to keep a high degree of actuality and to preserve the currently observed traffic patterns?
 - What type of historical data do we need?
 - traffic conditions,
 - time-of-day,
 - day of the week,
 - weather,
 - ...
 - How do we deal with historical data correlations and obtain unbiased travel time estimates?
 - Which measures should be adopted?
 - Average, median, average+/-SD,...

Using link travel times for route travel time statistics

Links Route Histogram Variance TT₁ **Skewness** Σ travel times Quantiles TT_2 Π_{R} . . . TT_{I} $\frac{\sigma_{X+Y}^2}{\sigma_Y^2 + \sigma_Y^2} = 1 + \frac{2\sigma_X \sigma_Y}{\sigma_Y^2 + \sigma_Y^2} \rho_{X,Y}$ Variance $f_{X+Y}(z) = \sum_{k=1}^{\infty} f_X(k) f_Y(z-k)$ Histograms 2 $k = -\infty$ X and Y must be statistically independent

link-based vs route-based predictions

- Spatial and temporal clustering due to link data covariance (delay propagation, spillback, weather,...)
- Route vs. link aggregation
 - Route based distribution represents "reality"
 - Link based distribution neglects covariance in travel time but are easy to calculate and use
- If covariance is fully regarded saved data explodes!

Instantaneous vs. Realized travel time

- Link-based instantaneous travel time vs. route-based estimated predicted travel time;
 - Instantaneous travel time ok during off-peak,
 - For congested routes/times realized travel time deviates significantly
 - Solution \rightarrow use different percentiles for predictions

Spatial Clustering approach

Redefine links in the network

- Based on correlations
- Based on node function

Network containing cluster-links and possibly fewer links

Route advice: Accuracy

Spatial Clustering

 Route travel time distributions calculated as convolution of link travel time distributions → impact of link TT correlations

Temporal Clustering – Hierarchical approach

Case study

- Test on 3 routes:
 - 1. Brussels-Leuven via E40-E314; evening peak
 - 2. Leuven-Brussels via E40-E314; morning peak
 - 3. Brussels-Leuven via the Leuvensesteenweg; traffic lights, shops, ...
- Motorway route ~16 km, 75 links, FF travel time ~10 min
- Leuvensesteenweg ~16 km, 90 links, FF travel time ~20 min.

Leuven-Brussels

Prediction difference

Dynamic stochastic routing application

Robust routing example

Comparing 6 routes between Leuven and Brugge:

Summary & Recommendations

- FCD has great potentials for information and routing applications;
 - Flexible
 - Cheaper and cheaper
 - Higher and higher coverage
- MobiRoute: Mobility and Routing project
 - Prediction method proposed based on historical data
 - Spatial correlation through link clustering
 - Temporal correlation using hierarchical clustering
- Better predictions using percentiles wrt average-based approaches

2. Speed and travel time profiles and distributions from mobile sensors

For Demand Estimation

Dynamic demand modeling

Traffic data

Dynamic traffic modelling

The dynamic demand estimation problem

History of OD estimation approaches

Model **OD MATRIX** DEMAND **NETWORK** MODEL TRAFFIC TRAFFIC STATES DATA

See Antoniou et al., Trans Res. C (2015) for a good overview

Planning (static)

- Mobility surveys, 4 step models, activity-based models (see eg. Ortuzar and Willumsen, 2001, Cascetta, 2008, Timmermans and Arentze, 2010)
- OD matrix correction / adjustments from traffic data (see eg. Van Zuylen and Willumsen, 1980, Maher, 1981, Cascetta, 1984, Hazelton and Watling, 2001)

Management (dynamic, offline)

- Quasi-dynamic / sequential / simultaneous (e.g. Cascetta, 2001, Marzano et al., 2012)
- DTA/DNL-based (see e.g. Ziliaksopoulos and Mahmassani, 1999, Tavana, 2001, Frederix, 2013, Cantelmo et al., 2014)

Real time control (dynamic, online)

- Data-driven (e.g., Cremer and Keller, 1987, Ashok and Ben-Akiva, 1993, Barcelo et al., 2011)
- Model-driven (e.g., Balakhrishna, 2001, Ashok, 2001, Zhou, 2004)

The OD estimation problem formulation

A simple example

The ambiguity of traffic data: supply or demand information?

Measured speeds

Time (minutes)

120

100

80

60

40

20

- Analysis of route choice models
- Including path information from floating car data in demand estimation

Analysis of route choices using GPS information

- Contribution: (real) shortest path and observed path;
 - Discrepancy in term of overlapping;
 - Discrepancy in term of travel time;

Innovative elements:

- Influence of the reliability
- Average velocities obtained with low-frequency GPS coordinates
- Congested network

Data Set and Methodology (1)

Low-frequency GPS coordinates*:

- 89 drivers
- September 2010 31 January 2012 (17 months)
- More than 52.458 observed paths (Monday-Friday)

Clustering technique:

- Single linkage method
- Euclidean distance as dissimilarity measurement during the clustering
- Cophonetic correlation to identify outliers in the clusters

Data Set and Methodology (2)

Average velocities:

$$C_i = \frac{\sum_{j=1}^N V_j^i}{N}$$

- $j \in N$ is the observed path
- *i* is the link id
- V_j^i is the speed for the j-th observation on the i-th link
- Average velocities:
 - A* Shortest path Algorithm

Data Set and Methodology (3)

1) Overlapping

- Shortest path has been represented as a polyline
- Overlapping percentage: the number of GPS coordinates which interpolate the shortest path

75% overlapping

100% overlapping

2) Travel time: Normalized Average Travel Time

$$NATT_{i} = \frac{ATT}{STT} \neq \left(\frac{\sum_{i=1}^{Np} TT}{N_{p}}\right) \cdot \frac{1}{STT_{i}}$$

$$\approx 1$$

$$\approx STT_{i}$$

- ATT= Average Travel Time
- STT= Shortest path travel time
- I = User

Results (1)

1) Overlapping: 13.766 observed paths/shortest one

	Overlap	Percentage	Results reported in literature:		
	100%	15.07%	400/ of the cheer wations overlap		
26.62%	90-99%	1.46%	40% of the observations overlap		
	80-89%	9.62%	<u>the shortest paths (≥90%)</u>		
	70-79%	9.57%	[4] [5]		
51.71% -	60-69%	11.10%			
	50-59%	4.89%			
	40-49%	12.17%	Differences:		
	30-39%	13.63%	1. Shortest path computed		
	20-29%	11.11%	using the real-actual speed:		
	10-19%	4.52%	2 Congrested Networks		
	0-9%	0.03%	2. Congested Network;		

Since measured speeds are used, exist at least one path which presents a lower travel time with respect to the observed one, for the specific time interval !!!

Results (2)

2) Travel Time Discrepancy:

- On average people have the tendency to use routes 1.3 times longer;
- On average people have more delay with respect to the shortest path (1.15 times longer);

Results (3)

3) Reliability: lateness reliability factor

$$r(l) = \exp\left[\frac{1}{2} \cdot T_{log}(l) - z_{\alpha/2} \cdot \sqrt{T_{log}(l)}\right]$$

l = route T_{log} = variation logarithm – day to day variance in travel time $z_{\alpha/2}$ = standard normal distribution tail

Probability to use the most reliable route for each user:

Results (4)

4) An illustrative example:

- Sub-Network:
 - 18632 Links, 7455 Nodes
- **Realistic traffic conditions:**
 - **RMSE Simulated and observed speeds** < 6%
 - Simulated and observed shortest path are the same
- Behavior of 3 user is analyzed:
 - Only morning peak
 - 320 observed paths

3

Examples of discrepancy between best/modelled and observed alternatives:

- User 3 prefers a longer path, driving around the city center rather than a direct route.
- User 1: The three routes overlap where the reliability is higher

Conclusions

- Do people really use the shortest (time) path?
- Are Wardrop's principles a realistic approximation?
 - On average, +30% travel time with respect to the shortest path
 - On average, +15% delay/km with respect to the shortest path

- Route reliability:
 - Is a relevant aspect in user's route choice
- Observed paths are not similar to the shortest one (i.e. direct one)

Using floating car data for dynamic demand estimation (1)

Total travel demand: 45,000 veh/h

Using floating car data for dynamic demand estimation (2)

Using floating car data for dynamic demand estimation (3)

Set

Experiment

Set

Experiment

Using floating car data for dynamic demand estimation (3)

Improvement on estimation and correlation of adopted information

Error – Demand Reproduction	Set 1	Set 2	only OD travel time
Intercepted ODs [%]	67	67	10
Euclidean distance reduction [%] (monitored Ods)	-19	-25	-28
Euclidean distance reduction [%] (not monitored Ods)	-16	-32	-13

Misures\SetSet 1Set 2OD target++Links Flow++OD travel time+

Distribution for each time interval

- Floating car data used to improve demand estimation
- Inconsistency of modelled and actual route choices amplifies error in the estimation
- Adding path information helps at finding more reliable results in real sized networks

3. Speed and travel time profiles and distributions from mobile sensors

For Mobility Analysis

Mobility analysis

- Activity-travel behavior dynamics
- Travel demand management and transport policy
- Multimodal transportation modelling
- ICT for travel planning and advisory systems

New and more advanced mobile sensors

Model challenges and where data helps (1)

The potentials of (Big) data

New opportunities, old problems

- Data → multiple solutions
- Big Data
 plethora of solutions!

Traffic counts \rightarrow ambiguity of flows Mobile sensors \rightarrow ambiguity of flows, modes, coverage, biased users, discontinuous in time and space...

Model challenges and where data helps (2)

Acknowledgments: Raphael Frank & Thierry Derrman (SnT)

Big Data approach

- Research opportunities
 - Multimodal modeling
 - Demand estimation
 - Travel Assistance systems

The new frontier of mobility analysis: Big data analytics

Collecting personal mobile sensor data: opportunities for decision

GO₂UNI platform: website and mobile application

- Carpooling
- Car-sharing
 - Intercampus bus shuttle
 - Public transport
- Real time information
- Traffic status
- Parking management
- Recommendations

UNIVERSITÉ DU LUXEMBOURG

Closing the loop: user needs and mobility habits fed into transport service optimisation 1. Detect activity travel choices 2. Provide advice

Methodologies for mobility data collection using smartphones and smartwatches

Activity analysis

- Accelerometer
- Gyroscope
- Pedometer
- Proximity sensor
- Light sensor
- Sound sensor
- Heart rate monitor

Position and social interaction

- GPS
- Wi-Fi
- Bluetooth

Activity-travel recognition

Position estimation

Position estimation

Location estimation

Location identification and classification

Identifying activities and mode

Contexts

Activities

Data fusion and machine learning

*1) Speed: 3km/h (avg), 18km/h (max); steps: 2206 (phone), 2542 (watch)

*2) Speed: 32km/h (avg), 107km/h (max); steps: 1 (phone), 0 (watch)

*3) Speed: 6km/h (avg), 20km/h (max); steps: 2394 (phone), 2404 (watch)

- *4) Speed: 8km/h (avg), 14km/h (max); steps: 9573 (phone), 9574 (watch)
- *5) Speed: 1km/h (avg), 5km/h (max); steps: 456 (phone), 623 (watch)

Group activity analysis

GPS data for 3 users

Identifying OD patterns

Home and workplace clustering estimation

Activity-travel patterns

- Example of derived daily activity-travel patterns
 - Different arrival/departure times by category
 - Different duration and scheduling of activities

Closure

- Enormous potentials offered by mobile sensors and floating car data technologies
- Applications investigated
 - Robust routing
 - Multimodal route planning
 - Dynamic traffic modelling
- New Big Data era: new opportunities and challenges
 - Understanding mobility needs
 - Forecast future activity-travel patterns
 - Enable users with enhanced information

THANK YOU!

Francesco.viti@uni.lu

