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Transport and Mobility in Luxembourg
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= Luxembourg strong monocentric country
= 320 000 commuters: 160 000 cross-borders:

= 76% car users (89% from outside); #1 car ownership rate in EU

Communes of residence of the University staff living in the Greater Region

GERMANY

Legend

[ National / Regional limits
Communal limits

University staff member per commune
+  1Resident

|

‘ 88 Residents (Trier)

BEL.

. Luxembourg-City (354 residents)

Luxembourg City

A 0 50 100 km
I
Realisation : Sprumont Frangois,

Cell for Sustainable Development,
Univerity of Luxembourg, 2011
Data source : University of Luxembourg




Traffic congestion in Luxembourg
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» Regional gridlocks

» Queues spilling back beyond
the country borders!

€ Fanner s mure g



MobiLab @ University of Luxembourg
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* Transport Research Group within Engineering Unit since 2012

» International and interdisciplinary team
= Head: Prof. dr. Ing. Francesco Viti ||| |}

= MSc - Univ. of Naples ‘Federico II', Civil Engineering degree
= PhD - TU Delft, PhD in transportation planning and management
= Post-doc — TU Delft (2007-2008) & Ku Leuven (2007 — 2012)

= 1 (part time) post doc

= Sebastien Faye, computer scientist I I
= 3 PhD students

» Francois Sprumont, spatial planner I*‘I

» Guido Cantelmo, transport engineer I I

= Bogdan Toader, computer scientist I I
= Incoming

i

= PhD position 1: Giorgos Laskaris, traffic engineer (Jan. '16)
» Post doc — Marco Rinaldi, automation and control (Mar 2016)

= PhD position 2 — to be filled, transport engineer (Summer '16)



Research at MobiLab: multimodal, multiscale,
multi-data

Data Scale

aggregate
Mobility analysis

Transport planning &
mobility management

Transport
Research

Micro (Movements) G FOou p
MobiLab

Activity-travel
behavior

Mobile sensor
networks
Individual
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Big Data
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Collaborations
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= Within UL

= Computer Science & SnT
= NetLab (VehicularLab, IGNITE) — travel assistance systems, (Big) data and mobility, Gaming

= AutomationLab — autonomous driving, vision and image processing

= Social Sciences (FLSHASE)

= |PSE - Activity-travel behavior, mobility planning & management, transport policy research

= HCl-usability Lab — Human Factors, Human Computer Interface

= Qutside UL

= Luxembourg

= Luxembourg Institute of Science and Technologies (LIST)

= Luxembourg Institute of Socio-Economic Research (LISER)

= Stakeholders (Ministries of Economy, Infrastructure, Sustainable Development, PT operators, Infomobility,...)
= International

= KU Leuven

= TU Delft

= Universities of Rome ‘La Sapienza’ & ‘Tre’

= KTH



1. Speed and travel time profiles and
distributions from mobile sensors

For Route Planning
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Overview
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Introduction
= |IBBT Project - MobiRoute

Basic info of FCD technology adopted

= Coverage requirements

= Quality requirements

= Converting point-based data into travel times

Data conversion and cleansing
= Detecting and removing biases and errors
= Handling data correlations

Data analysis

Closure



Multimodal Route Planning
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= MobiRoute - Mobility & Routing

= |IBBT ICON funding for June 2009 - June 2011

= Aim: develop a dynamic and robust route planner using historical traffic data and other
metadata (eg weather) for multimodal (car+train) trips.

= Achievements:
= Unique dataset containing both floating car data (Be-Mobile) and real time train data (DUO);
= High-performance web-based multimodal route-planner with robust routing (UGent);
» Use of advanced statistics to obtain reliable predictions of speeds and travel times (KUL)

= Spin-off company Go-Mobile as mean between info providers and services (Be-Mobile, SNCB, De
Lijn, ...)


http://www.go-mobile.be/nl/
http://www.go-mobile.be/nl/
http://www.go-mobile.be/nl/

Robust routing
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= Proposed definition:

Given an origin-destination pair, and a certain arrival (or departure) time
period, display the k best routes (if exist) such that:

1. The mean travel time does not exceed a-times the average travel time of the
shortest route during the same time interval

2. Given a certain a probability value, the travel time of the route is at maximum b-
times its free flow travel time with a probability.

Mr. Robust
Route Planner On-Line

=

Historical Travel Time
Database

Off-Line

Statistics System

TR -

- Route travel time histograms needed!




Floating Car Data technology
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= Advantages
» Provides full routes travel time data
» Low installation/maintenance costs
= Sample sizes grow with density and congestion levels

= Disadvantages
= Scalability, coverage
= Biases, not necessarily tracing vehicles (e.g., GSM of pedestrians, bikers)

= Typical fleets
» Taxis, Busses, Commercial vehicles (lorries, trucks,....)

» Miscellaneous of different types (eg. Be-Mobile’s)




From FCD to traffic info & routing applications
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= Accurate space-time plots reproduced from
individual trajectories

» Congested sections traced in small time
updates
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FCD for traffic estimation
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Ll
» Floating Car Data
= By nature trip/route based information [acc | ® Lights |
= Can cover ‘virtually' all links S —

State estimation highly sensitive to sample sizes

Travel time more representative wrt speed, density, flow,...

Interpretation issues

= Low speeds can be interpreted as congestion, parking maneuvers, etc.
= Tracing activity patterns not possible (e.g., pickup & delivery operations)
= New generation -> X-FCD



Data coverage issues
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= Spatial and temporal coverage:
» The discrete nature affects the completeness of travel time statistics.
» Route data might not be available at the time requested because
= it is insufficient in number or,
» |t does not cover all links or routes in the network, or
= Data may be available only for parts of the route;
= Part of the data may be missing (e.g. tunnels).

= Minimum number of probes needed
depends on

= Application (real time info, data analysis,
traffic management,...) 0.0
0.02

= Aggregation time (1 -> 5 mins) oo
= Sampling frequency (10Hz -> 1 min) S0 15200 233003

probe sample size (veh)

<
f—
[=)}

oy
0.14
0.12 K\
0.10 A’ﬁ%;\ —o— 5min
0.08 -0 10min
0.06 \m““@%ﬂ_ﬂ —— 15min

average estimated error

Relationship between link travel time estimation error,
aggregation time and sample size (from Jiang et al., 2006)



Data quality issues
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= Quality depends on three main aspects:

= Data acquisition and formatting operations
= Aggregation
» Interpolation
= Conversion to link/path statistics

= Data completion and smoothing
= missing data both in time and space,
= remove (white) noise;

= Data cleansing
= remove or correct corrupted or systematic errors
» jdentify biases (observation biases, sampling biases, detection lags,...)



MobiRoute coverage

UNIVERSITE DU
LUXEMBOURG




Providing robust info & routing
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» Travel time prediction algorithm based on Floating Car Data
» Data-driven approach for mid-term forecast
= Statistics based on historical data

» Test accuracy of predictions when extracting data by
= Dalily patterns
=  Weekly patterns

= Seasonal patterns

» Other metadata included in further improved versions (weather, working zones,...)



Travel time prediction issues
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» Combining historical data:

How far in the past should we look back to keep a high degree of actuality and to
preserve the currently observed traffic patterns?

What type of historical data do we need?
= traffic conditions,

» time-of-day,

= day of the week,

= weather,

How do we deal with historical data correlations and obtain unbiased travel time
estimates?

Which measures should be adopted?
= Average, median, average+/-SD,...



Using link travel times for route travel time statistics

Links Route

- Histogram
TT, \S/irlance
> travel times 5 ewpless
uantiles
TT
. > TT, >
TT,
2
i a 20x0
@ vanance e =14 Yg pX.Y
Ox T 0y 0%+ o
@ Histograms fX+Y Z fX fY . k)
k=—o0

b X and Y must be statistically independent

i
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link-based vs route-based predictions
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= Spatial and temporal clustering
due to link data covariance (delay
propagation, spillback, weather,...)

= Route vs. link aggregation

» Route based distribution represents
“reality”

» Link based distribution neglects
covariance in travel time but are
easy to calculate and use

= |f covariance is fully regarded
saved data explodes!




Instantaneous vs. Realized travel time
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» Link-based instantaneous travel time vs. route-based estimated predicted
travel time;
« Instantaneous travel time ok during off-peak,
« For congested routes/times realized travel time deviates significantly
« Solution - use different percentiles for predictions

Instantaneous travel time vs link-based realized travel time, 17.00 wed

1200 T T T

instantanenus t

— link-based realized tt

1000 — —

800 —

600 —

400 — —

200~ —




Spatial Clustering approach

Redefine links in the network Network containing

* Based on correlations cluster-links

* Based on node function and possibly fewer links
C £
T Ilg
2 &
T‘: 2 S \_‘)$
'y

1 1
[ 1 | .:\i)
! A




Route advice: Accuracy
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Plot of relative vanance in function of correlation threshold

I 1 1 I | I | I
Relative variance

Naive approximation

o7t :
& |C|er!t . Unclustered approximation
approximation
06F
05F
0'4 1 | 1 | 1 |
0 01 0.2 03 04 05 06 07

Correlation p




Spatial Clustering
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= Route travel time distributions calculated as convolution of link travel
time distributions - impact of link TT correlations

‘ Naive

4000 5000 6000 7000 8000 9000 10000
IIII Clustering & Convolution
— -
4000 5000 6000 7000 8000 9000 10000

Convolution only

— —

4000 5000 6000 7000 8000 9000 10000




Temporal Clustering — Hierarchical approach
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w10t Hierarchical clustering total set of days (ZOOM) TrUCk aCCldent

26—

correlation metric {hierarchical clustering)

0a—

L= —— 1 r1

14 7 21 3
Sat 14 Sat7 Sat 2]

8 15 3 10 17
Sunl Sun8 Sun1q Tue 3 Tue 10 Tue 17




Case study
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 Test on 3 routes:

1. Brussels-Leuven via E40-E314;
evening peak

2. Leuven-Brussels via E40-E314;
morning peak

3. Brussels-Leuven via the
Leuvensesteenweg; traffic lights,
shops, ...

* Motorway route ~16 km, 75 links, FF travel
time ~10 min

 Leuvensesteenweg ~16 km, 90 links, FF
travel time ~20 min.




Leuven-Brussels
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test rouda travel time
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g

Bottleneck not
always active
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Prediction difference
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Prediction considering dow, link, vs actual far a typical wednesday
2000 | | | \ | :

1800 — H

average
average+sigrnasi o
average+sigmars
average+sigmal
1400 averagetsigma | |

1600 —

1200

1000

seconds

800

600 p===

400

200 — —

0 | | | | | | | | | | |
il 2 4 g g 10 12 14 16 18 20 e
Time of Day




Dynamic stochastic routing application
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Robust routing example
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= Comparing 6 routes between Leuven and Brugge:




Summary & Recommendations
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= FCD has great potentials for information and routing applications;
» Flexible
= Cheaper and cheaper
» Higher and higher coverage

= MobiRoute: Mobility and Routing project

= Prediction method proposed based on historical data
= Spatial correlation through link clustering
= Temporal correlation using hierarchical clustering

= Better predictions using percentiles wrt average-based approaches



2. Speed and travel time profiles and
distributions from mobile sensors

For Demand Estimation
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Dynamic demand modeling

il
Traffic data

LUXEMBOURG
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The dynamic demand estimation problem
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History of OD estimation approaches
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Planning (static) Model

» Mobility surveys, 4 step models, activity-based

models (see eg. Ortuzar and Willumsen, 2001, Cascetta, 2008,
Timmermans and Arentze, 2010)
» OD matrix correction / adjustments from traffic

data (see eg. Van Zuylen and Willumsen, 1980, Maher, 1981,
Cascetta, 1984, Hazelton and Watling, 2001)

Management (dynamic, offline)
» Quasi-dynamic / sequential / simultaneous (e.g.
Cascetta, 2001, Marzano et al., 2012)

e DTA/DNL-based (see e.g. Ziliaksopoulos and Mahmassani,
1999, Tavana, 2001, Frederix, 2013, Cantelmo et al., 2014)

Real time control (dynamic, online)
« Data-driven (e.g., Cremer and Keller, 1987, Ashok and Ben-
Akiva, 1993, Barcelo et al., 2011)

* Model-driven (e.g., Balakhrishna, 2001, Ashok, 2001, Zhou,
2004)

See Antoniou et al., Trans Res. C (2015) for a good overview



The OD estimation problem formulation
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Goal: find most likely OD matrices that Model

best reproduce the data

* Highly combinatorial & non-linear problem

« ‘Smart’ combination of demand and traffic
information necessary

« Traffic model should be sufficiently accurate

Distance btw estimated Distance btw estimated
and seed matrix and observed traffic states

\ A

[ |

Vo
X = argxmin[ztlzj: fl(X+Zt:Zi: fz(yi

s.t. =J;JiAXj :jez;‘in
N

Traffic propagation
functions

Route choice functions



A simple example
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The ambiguity of traffic data: supply or demand information?

- ) e Measured speeds
{N114s]
Zesde Oude mm q
mvmmt"- ‘ Deurne
- N . e
u-}\ek‘;" ) B[S = Tellingen
L4 > i - 7o00 |- 3 Flows
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- viifde- > W Merksem |
Sl Mifavendor sl & o —
R S £
A\ abekst 50001 w
. - ¥ e o
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jjndrecht i - Antwerpen (N12]

‘Galgenweel 2000 |-
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Acknowledgments: Rodric Frederix (KU Leuven)
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Using floating car data for dynamic demand

modeling
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= Analysis of route choice models

* Including path information from floating car data in demand estimation



Analysis of route choices using GPS information
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= Contribution: (real) shortest path and observed path;
* Discrepancy in term of overlapping;
= Discrepancy in term of travel time;

* lnnovative elements:
» [nfluence of the reliability
= Average velocities obtained with low-frequency GPS coordinates
= Congested network



Data Set and Methodology (1)
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+ Low-frequency GPS coordinates*:
— 89 drivers
— September 2010 - 31 January 2012 (17 months)
— More than 52.458 observed paths (Monday-Friday)

v" 119 Clusters
Trips v’ 13.766 paths

Systematic

» Clustering technique:
— Single linkage method
— Euclidean distance as dissimilarity measurement during the clustering
— Cophonetic correlation to identify outliers in the clusters



Data Set and Methodology (2)
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« Average velocities:

oo AL

- Jj € N is the observed path
- iis the link id

- V'is the speed for the j~th
observation on the i-th link

=
- Average velocities: o5 , Y]
-~ A* Shortest path Algorithm S o
9
o
@ Time




Data Set and Methodology (3)
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1) Overlapping
— Shortest path has been represented as a polyline
— Overlapping percentage: the number of GPS coordinates which interpolate the shortest path

= > = =
S — s - Y <5 { 7 P erf A Y g s
= ¥ 4 = S R T e
g S - =lEege R 4 y

75% overlapping 100% overlapping

2) Travel time: Normalized Average Travel Time
-, RS
-~ / Np \
(/N ATT; \F 'ﬂ :,: Zi=1 T .‘; 1 — ATT= Average Travel Time
\ ‘) STT N, STT; — STT= Shortest path travel time
~=7 ‘e / — l=User
~ 1 S d

~ STT;



Results (1)
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1) Overlapping: 13.766 observed paths/shortest one

_|  Overlap a1l Results reported in literature:
100% 15.07% 0 :
26.62% 90-99% 1.46% 40% of the observations overlap
80-89% 9.62% the shortest paths (290%)

S51.71% —

40-49% 12 17% Differences:

30-39% 13.63% 1. Shortest path computed

20-29% 11.11% using the real-actual speed;
-190 0

18_309/0/0 g:ggoﬁz 2. Congested Network;

Since measured speeds are used, exist at least one patth wiich
presents a lower travel timve witlh respect to the observed one, for
the specific time interval '



Results (2)
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2) Travel Time Discrepancy:

Normalized Average Travel Time Normalized Average Delay/Km
2
1,2 1.8
1,6 1.6
1,4 1.4
E 1,2 é 1,2
Z 1 Z 1
0,8 | it i 0,8
0,6 | I i 0,6
0,4 | (I I 0,4
0,2 | (it I 0,2
0 | 0

1:...; User ID 1:...; User ID

- Sh‘é?tqest path

+ On average people have the tendency to use routes 1.3 times longer;
« On average people have more delay with respect to the shortest pativ (1.15 times longer);



Results (3)
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3) Reliability: lateness reliability factor

1 [ =route
r(l) = exp E . Tlog (D) — Zg)2 " /Tlog (l)] Tiog= variation logarithm — day to day
variance in travel time
z4,= standard normal distribution tail

Probability to use the most reliable route for each user:

100%
90%
80%
70%

< 60%

& 50%
40%
30%
20%
10%

0%

1;...; Users sorted for decreasing value of r(l)



Results (4)
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4) An illustrative example:
Sub-Network:

- 18632 Links, 7455 Nodes
 Realistic traffic conditions:

-  RMSE Simulated and observed speeds

<&%
-  Simulated and observed shortest pativ
are the same
g + Behavior of 3 user is analyzed:
-  Only morming peak
L"Q-' — 320 observed paths
m Shortest Path = Modelled routes  m Observed routes

1,6
(]

E 14
|_

T 1,2

g 1
|_

- 0,8
(0]

N 06
©

€04

20,2

0

1 2 3
User




Results (5)
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Examples of discrepancy between best/modelled and observed alternatives:

“ . 40003
| ~- 60% / | 62%

« User 3 prefers a longer path, driving around the city center rather than a direct route.
+ User 1: The three routes overlap where the reliability is higher



Conclusions
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= Do people really use the shortest (time) path?

= Are Wardrop’s principles a realistic approximation?
= On average, +30% travel time with respect to the shortest path
= On average, +15% delay/km with respect to the shortest path

NO\

* Route reliability:
— Is arelevant aspect in user’s route choice

« Observed paths are not similar to the shortest one (i.e.
direct one)



Using floating car data for dynamic demand
estimation (1)
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@ Ndéipgilm thed2D formulation a term
4€fe miodets; route choice measures:

E BDSIinasgl time ducti
rEOf Ikdnsasures reproduction

Indicator used: percentage average error
@ Resolution algorithm: SPSA AD-PI
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Using floating car data for dynamic demand

estimation (3) il
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27000 41804 M1 1041204 N
@ Total demand = . 15%][711%[ 712%™ Misures\Set Set1 Set2
= 45000 i i i
£ 43000 : : : OD target + +
M 1000 : : .
a 41000 : : Links Flow + +
S 39000 : : )
T 27000 : | OD travel time +
S 2 000 X
| =
' 55000
Experirnent
@ Demand reproduction _Spatial Spatial - Temporal
distribution distribution
= | =
< T462 \%gl < i i Euclidean
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Using floating car data for dynamic demand

estimation (3) il
< Improvement on estimation and Misures\Set Set1 Set2
correlation of adopted information OD target P
Error — Demand Reproduction Set 1 Set 2 tr(;r\]/lgl :i)n[’?e Links Flow + +
Intercepted ODs [%] 67 67 10 OD travel time +
Euclidean distance reduction [%0]
(monitored Ods) 19 25 28
Euclidean distance reduction [%0]
(not monitored Ods) -16 32 13
@ Distribution for each time interval
Start Setl Set 2
| | | | | 153] | ’
| | | | | 143
: : : 14515 1167[
o 171] 1 [155 o Y
i i 163} 01860 i i : Euclidean
| | 0 0 i i i Distance
194/ |214] [221] 197 L




Conclusions
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» Floating car data used to improve demand estimation

» Inconsistency of modelled and actual route choices amplifies error in
the estimation

= Adding path information helps at finding more reliable results in real
sized networks



3. Speed and travel time profiles and
distributions from mobile sensors

For Mobility Analysis
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Mobility analysis
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Activity-travel behavior dynamics

Travel demand management and transport policy
Multimodal transportation modelling

ICT for travel planning and advisory systems
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Model challenges and where data helps (1)

UNIVERSITE DU
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The potentials of (Big) data

New opportunities, old problems
« Data - multiple solutions
 Big Data = plethora of solutions!

Traffic counts - ambiguity of flows
Mobile sensors—> ambiguity of flows, modes, coverage,
biased users, discontinuous in time and space...




Model challenges and where data helps (2)
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* New location-based datasets
« GSM data
* WiFi connections
« Smartphone data

Estimated Travel Time (s)

Acknowledgments: Raphael Frank & Thierry Derrman (SnT)



Big Data approach
.
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= Research opportunities
= Multimodal modeling
= Demand estimation
= Travel Assistance systems




The new frontier of mobility analysis: Big data

analytics . |

UNIVERSITE DU
LUXEMBOURG

Collecting personal mobile sensor data: opportunities for decision

SI INNNrt cansirac

Enhance User Experience
Recommendations
Personalization

 §

3rd Party Applications, Native ]

Applications

Analytics (Text Mining, Machlne
Learning, Signal Processing)

ocna User data
data

Sensor
Data

rm—

Social
Data




GO,UNI platform: website and mobile
application uni.lu

' m Collecting
—=
_—
-

GO, uni.ln

UNIVERSITE DU
LUXEMBOURG

« Carpooling

» Car-sharing

* Intercampus bus shuttle
« Public transport

 Real time information

« Traffic status

« Parking management

« Recommendations



Activity-travel data collection

LUXEMBOURG

Closing the loop: user needs and mobility habits fed into transport

S?T\B%?egpgéﬂmﬂ?é‘/el choices 2. Provide advice

m&u o Collect big data
[ : '

Analyse data

Exploit commonalities

Processing

62



Methodologies for mobility data collection

using smartphones and smartwatches il

UNIVERSITE DU
LUXEMBOURG

Activity analysis Position and social interaction
= Accelerometer = GPS

= Gyroscope = Wi-Fi

» Pedometer = Bluetooth

* Proximity sensor —

= Light sensor ® t?hgm D
= Sound sensor w TET System @ platform sy
= Heart rate monitor D D P |

Mobile device
(smartphone, tablet) Internet
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Position estimation

UNIVERSITE DU
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- Methods used for position estimation:
~ + High accuracy (GPS, Wi-Fi and mobile networks)
* Power saving (Wi-Fi and mobile networks)

GPS only

= Position estimation



Location estimation
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e a3 T A

= | ocation identification and classification



ldentifying activities and mode
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Activities Contexts
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*1) Speed: 3km/h (avg), 18km/h (max); steps: 2206 (phone), 2542 (watch)

*2) Speed: 32km/h (avg), 107km/h (max); steps: 1 (phone), 0 (watch)

*3) Speed: 6km/h (avg), 20km/h (max); steps: 2394 (phone), 2404 (watch)

*4) Speed: 8km/h (avg), 14km/h (max); steps: 9573 (phone), 9574 (watch)
*2) Speed: 1km/h (avg), Skm/h {max); steps: 456 (phone), 623 (watch)



Group activity analysis
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GPS data for 3 users
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Home and workplace clustering estimation



Activity-travel patterns

= Example of derived daily activity-travel patterns

= Different arrival/departure times by category
= Different duration and scheduling of activities

Proportions Activity profile by PROF
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= Enormous potentials offered by mobile sensors and floating car data
technologies

= Applications investigated
= Robust routing
= Multimodal route planning
= Dynamic traffic modelling

= New Big Data era: new opportunities and challenges
» Understanding mobility needs
» Forecast future activity-travel patterns
= Enable users with enhanced information
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