FORECASTING OF TRAFFIC FLOWS AND JAMS ON HIGH-WAYS

IGOR GRABEC

Univerza v Ljubljani & Amanova d.o.o., Tehnološki park Ljubljana

Optimiranje ruta vozila korištenjem stvarno-vremenskih prometnih podataka, 30. lipnja 2014, ZUK Borongaj, Fakultet prometnih znanosti u Zagrebu

How a child copes with a complex traffic? Based upon learning!

Objective of the lecture

- **Problem:** Traffic flows are very complex and therefore hardly modeled and forecast analytically. Our aim is to show how this problem can be solved statistically.
- General solution: Non-parametric regression expressed in terms of measured data.
- **Examples:** Forecasting of traffic flows, road slipperiness and jams.

Statistical treatment

- Basis of description: Experimentally estimated probability density function - PDF. The kernel of the estimator is the instrument scattering function.
- Estimation of relations between measured variables: Non-parametric regression determined by the conditional mean estimator.

Statistical estimation of functions from measured data by the conditional mean

Basic properties of data in the two-dimensional case

- A vector variable Z = (X, Y) is considered
- z_i is the instrument output in a continuous joint sample space $Sz = Sx \otimes Sy$ of size $2L \otimes 2L$
- N measured joint data $\{z_1, \dots, z_N\}$ are given
- Calibration by a unit $w = u \otimes v$ yields the gaussian instrument scattering function:

$$g(z, w; \sigma) = g(x, u; \sigma)g(y, v; \sigma)$$

Scattering width σ is equal for both components

Joint probability density f(x,y)

 From data samples {(x,y)n; n= 1... N } the probability density is estimated by:

$$f(x, y) = \frac{1}{N} \sum_{n=1}^{N} g(x, x_n; \sigma) g(y, y_n; \sigma)$$

 The same model is applicable in a multidimensional case, just the number of components is increased: z = (x,y,...)

Extraction of a law from PDF

An optimal MSE predictor of a law Y(x) is the conditional average CA:

$$Y_p(x) = \mathbf{E}[y|x] = \int y f(y|x) dy$$

Expressed by data it gets the form:

$$Y_{p}(x) = \frac{\sum_{i=1}^{N} y_{i} g(x - x_{i}; \sigma)}{\sum_{j=1}^{N} g(x - x_{j}; \sigma)} = \sum_{i=1}^{N} y_{i} S_{i}(x)$$

Properties of similarity measure $S_i(x)$

$$S_i(x) = \frac{g(x - x_i; \sigma)}{\sum_{j=1}^N g(x - x_j; \sigma)}$$

Si is a normalized measure of similarity between given x and the stored sample value xi

$$\sum_{i=1}^{N} S_i = 1 \qquad \qquad 0 \le S_i \le 1$$

Scheme of the predictor resembles a radial basis function neural network

Predictor quality

$$Q = 1 - \frac{\mathrm{E}[(Y_p - Y)^2]}{\mathrm{Var}(Y_p) + \mathrm{Var}(Y)}$$

$$=\frac{2\operatorname{Cov}(Y_p,Y)}{\operatorname{Var}(Y_p)+\operatorname{Var}(Y)}-\frac{(\operatorname{E}[Y_p]-\operatorname{E}[Y])^2}{\operatorname{Var}(Y_p)+\operatorname{Var}(Y)}$$

Q=1 for an exact prediction: $Y_p = Y$, Q=0 for statistically independent Y and Y_p

Q is approximately equal to correlation coefficient r

Prediction of road slipperiness from weather forecast in Sweden

Data: S – Slipperiness P – Precipitation, T – Temperature,

Data provided by: Slippery road information system – SRIS - www.sris.nu

Predicted and original slipperiness

1 day ahead prediction Accounting of past data improves the accuracy of prediction

Correlation plot of predicted and observed slipperiness

r – correlation coefficient of X_p and X

Correlation plot of the critical variable: $X_{tr} = U(X - 0.5 X_{max})$

r - correlation coefficient of Xtrp and Xtr

Example: modeling and forecasting the time series of traffic flow

- Codes of day *D(t)* and hour *H(t)* are joined with traffic flow rate *Q(t)* in the state vector:
 Z(t)=(D(t), H(t), Q(t), Q(t-1),...)
- Samples from the past time series are used to estimate the probability distribution of the state vector *Z*.
- From given codes and past flow rate, the future flow rate is optimally predicted by the conditional mean estimator:
 Qe(t) = E[Q | D(t), H(t), Q(t-1),...]
- An optimal combination of condition variables is found by analysis of correlation between predicted and observed data.
- Weather data can be included into condition.

Modeling and forecasting of traffic flow on a high-way

A record of traffic flow rate over a year

Hour-variable Ch used in modeling of traffic flow dynamics

Encoding of days provides additional information for analysis

Good prediction of Q from the condition $\{D, H\}$ is obtained for normal days

Comparison of predicted and observed flow rate in normal days

Worse prediction from the condition $\{D, H\}$ is obtained for holidays

Comparison of predicted and observed flow rate in holidays

Correlation coefficient

Merging of condition $\{D(t), H(t)\}$ with past Q improves the prediction

Dependence of < *r* > on the number of past Q components in the condition

Graphic user interface for prediction of traffic flow

- User sets: the day, hour, and point of prediction.
- The field of traffic activity is displayed in the top graph.
- The predicted time series of traffic flow rate is displayed in the bottom graph.
- The selected place and hour of prediction are marked in graphs
- The next problem is to map the predicted flow to parameters of jams evolving due to various disturbances at critical regions!

Forecasting of traffic jam

- **Problem:** Traffic jams on high-ways are developing due to various disturbances that decrease the road capacity. Our next aim is to describe a forecasting method.
- **Basic information:** Properties of the disturbance and the statistical data about the traffic flow rate.
- Mathematical tool: Statistical predictor of traffic flow rate and road capacity.
- Goal: To develop a program for transformation of predicted traffic flow rate to variables characterizing jam properties.

Micro-dynamic modeling of jam evolution at a bottleneck

Micro-dynamic model is based upon driving rules and time series of traffic flow rate.

Micro-modeling is not convenient for application due to many trajectories.

Hint: Apply macro-modeling by continuity equation in which a boundary condition is determined by the predicted traffic flow

Road capacity Qmax

Dependence of road capacity Q_{max} on the speed limit $v_{\text{o}}.$

Example of jam estimation

- Jam properties are estimated from the given road capacity *Q_{max}* and the predicted input flow *Q_{in}* (right).
- When the input flow surpasses the road capacity: $Q_{in}>Q_{max}$, a jam starts to evolve shown on the right.
- The number *N* of cars in a jam (left) is estimated by integrating the difference: *Qin Qmax*.

GUI for estimation of traffic jam properties

- User sets: the day, hour, and point of prediction.
- The field of traffic activity is displayed in the top graph.
- The predicted time series of traffic flow rate is displayed in the bottom right graph.
- User also sets: proper speed, number of lanes, and selects display of T or N in jam.
- The input and passed traffic flow rate are indicated in the right bottom diagram.
- The forecast evolution of jam is shown in the left diagram.

More advanced description of disturbance, traffic flow, and jam evolution

- From the properties of the disturbance a proper value of the speed limit can be estimated.
- The speed limit provides for the description of the equilibrium traffic by two fundamental laws.
- To describe a variable traffic at a disturbance one has to solve partial differential equations of traffic field.
- Homogenization of congested flow is possible by an optimal control of speed limit.
- More general problem of an optimal traffic control can be treated by the methods of intelligent control.

Properties of statistical modeling

- Demonstrated prediction of driving conditions needs no analytical model, but just measured data.
- The method provides information support for drivers and winter roads service.

Conclusions

- Demonstrated forecasting of driving conditions and traffic flows needs no analytical model, but just measured data.
- Statistical modeling by CA yields rather accurate prediction of traffic flow rate on a high-way
- Based upon the predicted flow rate and decreased road capacity the properties of traffic jams at disturbances on a high-ways can be forecast.

References

- 1. I. Grabec, W. Sachse, *Synergetics of Mesurement, Prediction nad Control*, Springer, Berlin, 1997.
- I. Grabec, K. Kalcher, F. Švegl, *Modeling and Forecasting of Traffic Flow*, Nonlinear Phenomena in Complex Systems, 13(1), 53-63, 2010.
- I. Grabec, F. Švegl, Statistical forecasting of high-way traffic jam at a bottleneck, Advances in Methodology and Statistics, 9(1), 81-93, 2012.
- I. Grabec, F. Švegl, *Foerecasting of traffic jams on high-ways caused by adverse weather*, 16th International Road Weather Conference SIRWEC, Helsinki, FI, May 23-25, 2012, ID:27
- 5. I. Grabec, F. Švegl, *Stabilization of traffic by speed limit variation*, ISEP 2014, Ljubljana, SI, March 24-25, 2014, R7.

Suggested reference for further work

Aimed at those interested in:

- adaptive and autonomous statistical modeling of natural laws from sensory signals,
- sensory-neural networks,
- intelligent and self-control,
- synergetics and informatics.

Stopping distance and friction coefficient

- For constant μ_o : $x_{st} = x_{react} + x_{break} = \tau v + v^2 / 2 \mu_o g$;
- *t* reaction time, g acceleration of gravity.
- Generally μ depends on velocity ν as: $\mu(\nu) = \mu_0 \exp(-\nu/c)$
- $c \text{decay velocity: } c \cong 85 \text{km/h}$
- Due to decay of $\mu(v)$ the stopping distance is increased:
- $x_{st} \cong \tau v + \exp(0.7 v/c) v^2/2 \mu_0 g$
- A proper speed limit on slippery road is obtained by equalizing breaking distances at normal and adverse conditions: $x_{st1} = x_{st2}$
- A proper speed limit at decreased visibility is obtained by equalizing stopping and visibility distance: $x_{st2} = x_{vis}$

Estimation of speed limit from stopping distance characteristics

 A proper speed limit on a wet road is obtained by equalizing stopping distances on dry and wet pavement:

 $x_{st1} = x_{st2}$ - black arrow

 A proper speed limit at decreased visibility is obtained by equalizing stopping and visibility distance:

 $x_{st2} = x_{vis}$ - blue arrow

Characteristics of proper speed limit

Dependence of proper speed limit on friction coefficient (left) obtained from various assumptions about breaking distance. Dependence of proper speed limit on visibility distance (right) obtained from various assumptions about breaking distance. From the speed limit the road capacity *Q_{max}* can be estimated.

Variables needed for macromodeling of traffic dynamics

- Basic variables:
 - mean distance between cars:
 - density of cars:
 - equilibrium velocity of cars:
 - equilibrium flow rate:
- Parameters and reference variables:
 - car length: $\lambda \cong 5m$, reaction time: $\tau \cong 1s$
 - speed limit: v_{0} , speed reference: $u = \lambda / \tau$
 - clear spacing: $r \lambda$, proper velocity: $w = (r \lambda)/\tau$

 $Q_e = \rho v_e$

Ve

 $\rho = 1/r$

Equilibrium velocity

- Supposition: Equilibrium velocity v_e is smaller than the speed limit: $v_e \le v_o$ and the proper velocity: $v_e \le w$.
- Joint constraint: $1/v_e = 1/v_o + A/w$
- Observations yield the weight: $A \cong 3u/w$ and the first fundamental law of traffic:

$$v_e = \frac{v_o}{1 + \frac{uv_o}{w^2}}$$

• From $u(\rho)$ and $w(\rho)$ we obtain: $v_e = v_e(\rho)$ and $Q_e(\rho) = \rho v(\rho)$

Fundamental diagrams of equilibrium traffic

 $v_e(\rho)$

Equations of traffic field: v(x, t), $\rho(x, t)$

• Velocity adaptation law:

$$\frac{dv}{dt} = \frac{v_e - v}{T}$$
; relaxation time: $T \sim 3\tau$

• Continuity equation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} = I$$

- Traffic source term:
- $I(x,t) = Q(t) \delta(x x_o)$; Q(t) is forecast

Numerical treatment

- Cell dimensions: $\Delta x = \lambda$, $\Delta t = 0.1\tau$
- Intervals: 0 < *x* < 0.5km ; 0 <*t* <1h
- Initial and boundary conditions: $\rho=0$; v=0
- Source term specified by the forecast flow rate Q centered at rush hour: t = 0.5h.
- Transition to non-dimensional variables:
- $t/T \rightarrow T$; $x/\lambda \rightarrow X$; $v \tau/\lambda \rightarrow V$; $\rho \lambda \rightarrow \rho$; $Q \tau \rightarrow Q$

Specification of a bottleneck

- **Position**: 0.2km < *x* < 0.4km
- Reduced speed: $0.5 v_o$

Dependence of the velocity reduction factor B on x.

Field distributions

Parameters: v_o =130 km/h ; Q_{max} =1875 veh/h

Application of jam forecasting

Observation: The evolution of traffic jam at the bottleneck critically depends on the input flow. Forecasting of its properties is possible based upon the predicted flow.

Advice: Before installing a bottleneck one can estimate its influence and diminish traffic disturbance by a proper adaptation of the bottleneck structure.

STABILIZATION OF TRAFFIC FLOW BY THE SPEED LIMIT CONTROL

Basic properties of congested traffic

- The maximum of traffic flow Qmax takes place at some optimal value of density pmax.
- The congested traffic at p>pmax is subject to dynamic instability that causes evolution of moving jams.
- These jams diminish the road capacity and lead to detrimental economic consequences.
- Consequently, the basic problem of an optimal control of congested traffic is to avoid the instability and so to assure homogeneous state.

An optimal control of speed limit

At each density ρ it is reasonable to set the value of speed limit vo so that the traffic state corresponds to the maximum of flow Q. In this case the state is stable and moving jams do not develop.

Family of characteristics $Q(\rho, v_0)$

Characteristic of the optimal speed limit

From the family of characteristics $Q(\rho,v_0)$ we obtain the relation between density and the optimal speed limit. (right)

A paradox !?! With an increasing density ρ the value of the optimal speed limit vo must be properly decreased if we want to keep homogeneous traffic state without moving jams!

More general case in changing environment and self-controlled system

I - input, U - utility, C - control, Q - plant state

Basic problem of intelligent control

- Dynamics of the system is determined by: dQ/dt=F(Q,C), but not known !!!
- Problem: Find the control C=C(I,Q) that optimizes the system utility: U=U(I,Q,C)
- Hint:
- 1) Apply given examples and use general regression for modeling of functions: F, C, U
- 2) Find the optimal utility by reinforcement learning

Conclusions about the traffic control

 Homogenization of congested flow is possible based upon an optimal control of speed limit.

 More general problem of an optimal traffic control can be treated by the methods of intelligent control.

Prediction of air pollution ARPV data about PM10

⊠ Microsoft Excel - Arpv_data																				
📴 Eile Edit View Insert Format Tools Data Window Help																				
			Da, ∣AB		V PS	-	<u></u>	~		~	AIZI	i (lifia -)	a 100	207		: Arial			_ 1	
															• •					
: 🛄 📆 🖆 🧐 🖓 🔄 🖻 🖒 💆 👘 🕕 🏹 Reply with Changes End Review 🥃																				
	A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	P	Q	R	S	Т
				ᄇ																ł
		all		witho	=									Air ella	n Air ndia	in Air age				
		qc	eq	eq	çti							_	-	Å, ð	Ma Ma	10 i vera				ł
		- Wi	spe	ebe	dire				<u>.</u>			tie	teti	P. H.	PN N	PM ICe				8
		ę	Ē	n/s	2		_	dey	liat	_		oita	°d "	ti a	tion on	dA				1
		age	Ň	0.5 N	N	a	bar	튼	La(F	eci	fur ent	Star	Sta	Star				
		m∛ ent	age	ŝ	age	Ē	E	Ē	age	÷	age	ם	aval era	ij, je	is i	drig ten				B
4		erc 0.5	ver	ver alu	ver	-în	Ē	tan	ver	Ē	ver	ota	anp	onc	ual on	ond and				
_		<u>~</u> ∨	A	< >	A		Ŧ	S	◄	-	◄	-	шş	08	00	002				1
														arc	nan	ip.				
	-	Ξ_	E	ε,	F			=,	-	_	-			8	5	5				
2	late	ia vi	2	ž	'			tan	me	Ë	me	Ę	hte	μ	E E	M		g	E	5
3	1.1.2003	17	1	11	289.1	156	206	0.54	81	277	280	0	296	63	62	63.0		2003	1	1
4	2.1.2003	12	1	11	352,9	46	90	0,69	7	278	278	0,2	294	55	54	55,0		2003	1	2
5	3.1.2003	25	1		85,2	74	126	1,37	17	277	278	0	293	53	46	50,0		2003	1	3
6	4.1.2003	17	0,8	09	75,1	93	117	2,74	50	274	276	0,2	289	62	46	54,0		2003	1	4
7	5.1.2003	8	2,7	29	299,5	266	491	0,39	31	276	278	5,8	293	44	40	42,0		2003	1	5
8	6.1.2003	8	2,3	25	326	262	464	0,05	42	274	276	8	288	48	36	42,0		2003	1	6
9	7.1.2003	U	2,5	25	338,2	245	471	U	19	274	275		287	33	25	29,0		2003	1	
10	8.1.2003	U	2,9	29	336,4	271	521	0.00	12	274	275	0,2	285		41	41,0		2003	1	8
12	9.1.2003	12	1.5	17	337.2	205	284	0,02	20 51	273	274	0	289		32	32,0		2003	1	10
13	11.1.2003	12	3.5	35	323.2	347	623	0.03	87	272	274	0	200					2003	1	11
14	12.1.2003	4	2.1	21	357.9	257	391	0.36	100	269	272	0	302					2003	1	12
15	13.1.2003	37	0,7		57,1	136	178	2,75	83	267	271	0	311		130	130,0		2003	1	13
16	14.1.2003	62	0,5		41	119	156	1,81	84	269	273	0,2	314		152	152,0		2003	1	14
17	15.1.2003	62	0,5		14,4	125	166	5,1	80	270	273	0,2	315		188	188,0		2003	1	15
18	16.1.2003	8	1	11	12	91	126	4,98	46	270	274	0,2	305		196	196,0		2003	1	16
19	17.1.2003	17	0,9	11	41,7	120	163	3,54	72	272	276	0	300		127	127,0		2003	1	17
20	18.1.2003	17	1,1	12	34,8	84	124	1,43	39	272	277	0	291	128	103	116,0		2003	1	18
21	19.1.2003	0	1,4	14	68,7	156	198	4,08	105	271	274	0,2	318	76	67	72,0		2003	1	19
22	20.1.2003	33	0,7		78,4				93	271	275	0,4	306	101	97	99,0		2003	1	20
23	21.1.2003	4	2,3	24	312,2				17	276	278	15	293	83	87	85,0		2003	1	21
24	22.1.2003	17	1,8	21	39,8	112	1.4.1	2.20	31	275	279	- 2	294	49	50	50,0		2003	1	22
20	23.1.2003	3/	1.0	10	70	170	141	2,39	107	273	277	0,2	296	64	73	79,0		2003	1	23
20	24.1.2003	<u>л</u>	3.1	31	326.3	331	200	1.22	107	274	279	02	201	49	37	43.0		2003	1	241
28	26.1.2003	<u>л</u>	2.3	23	335.9	268	365	2 23	111	275	278	,2 	288	43	47	43,0		2003	1	25
29	27.1.2003	4	1.1	12	66,4	192	245	3.29	96	273	277	n	294		86	86 0		2003	1	27
30	28.1.2003	12	1.2	14	0.4	141	200	2,63	87	272	276	Ö	303	148	134	141.0		2003	1	28

Selection of variables used in modeling predictor of PM10

- As given variables we consider: the average wind velocity – W, humidity – H and average temperature – T.
- As hidden variable we consider concentration *P=PM10*.
- Using sample vectors $Z_n = (W, H, T, P)_n$ from the recorded data base we create statistical model of the relation P=G(W, H, T) by the CA estimator.
- By using the model we predict hidden *P* from some given data *W*,*H*,*T*.
- Here the time is used as sample index *n*.
- Agreement between predicted and measured data is described by the correlation coefficient *r* and shown in correlation diagram.

Records of variables used in modeling

Predicted and observed PM10

Correlation plot of predicted and observed PM10

Properties of statistical modeling

- Demonstrated prediction of driving conditions needs no analytical model, but just measured data.
- The method provides information support for drivers and winter roads service.

Disturbance on a road sector

Dependence of the velocity reduction factor *B* on *x*

Dependence of input flow rate Q on time

Parameters: vo=130km/h , Qmax=1875veh/h

Traffic flow field

Distribution of traffic flow field left – ground plan, right – side view.

Traffic velocity field

Distribution of traffic velocity field left – ground plan, right – side view.

Traffic density field

Distribution of traffic density field left – ground plan, right – side view.