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How a child copes with a complex traffic?
Based upon learning!

Ady




Objective of the lecture

 Problem: Traffic flows are very complex and therefore
hardly modeled and forecast analytically. Our aim Is to
show how this problem can be solved statistically.

« General solution: Non-parametric regression expressed
In terms of measured data.

 Examples: Forecasting of traffic flows, road slipperiness
and jams.



Statistical treatment

« Basis of description: Experimentally estimated
probability density function - PDF. The kernel of the
estimator is the instrument scattering function.

« Estimation of relations between measured variables:
Non-parametric regression determined by the conditional
mean estimator.



Statistical estimation of functions from
measured data by the conditional mean
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Basic properties of data in
the two-dimensional case

A vector variable Z = (X,Y) Is considered

Zi Is the instrument output in a continuous joint sample
space Sz = Sx ® Sy of size 2L.®2L

N measured joint data {zs,...,zn } are given

Calibration by a unit w = u®v yields the gaussian
Instrument scattering function:

g(z,w,0)=g(x,u;o)g(y,v;o)

Scattering width o Is equal for both components



Joint probability density f(x,y)

« From data samples {(Xx,y)n;n=1..n} the
probability density Is estimated by:

(X y)= %ZNZQ(X’ Xn; &) g(Y, yn; o)

 The same model is applicable in a multi-
dimensional case, just the number of
components Is increased: z = (X,Y,...)



Extraction of a law from PDF

An optimal MSE predictor of a law Y(X)
IS the conditional average CA:

Yo(x) = Ely|x]= [y f (y|x)dy

Expressed by data it gets the form:
N
Zyig(X—Xi;G) \

Yp(x) == =" yi Si(X)
Zg(X—Xj;O') =1

]J=1




Properties of similarity measure Si(X)

Si(x) = Ng(X—Xi;G)
ZQ(X—XJ';G)

Si Is a normalized measure of similarity between
given x and the stored sample value Xi

N
ZSiIl 0<Si<1
i1



Scheme of the predictor resembles
a radial basis function neural network




Predictor quality

_ E[vo-vy?]
Var(Yp) + Var(Y)

_2Cov(Ys,Y)  (E[Ys]-E[Y )’
~ Var(Ye)+Var(Y)  Var(Ys) +Var(Y)

Q=1 for an exact prediction: Y, =,
Q=0 for statistically independent Y and Y,

Q Is approximately equal to correlation coefficient r



Prediction of road slipperiness from weather
forecast in Sweden
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Predicted and original slipperiness
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1 day ahead prediction
Accounting of past data improves the accuracy of prediction



Correlation plot of predicted and observed
slipperiness

CORRELATION PLOT
14 r : —

+  XpiX
......... szx
Regr

12

r — correlation coefficient of Xp and X



Correlation plot of the critical variable:
Xir = U(X - 0.5 Xmax)
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Example: modeling and forecasting
the time series of traffic flow

Codes of day D(t) and hour H(t) are joined with traffic
flow rate Q(t) in the state vector:

Z(t)=(D(t), H(), Q(1), Q(t-1),...)
Samples from the past time series are used to estimate
the probability distribution of the state vector Z.

From given codes and past flow rate, the future flow rate
IS optimally predicted by the conditional mean estimator:
Qe(t) = E[Q | D(t), H(Y), Q(t-7),.. ]

An optimal combination of condition variables is found by
analysis of correlation between predicted and observed
data.

Weather data can be included into condition.



@ [cars/h]

1000 =

Modeling and forecasting of
traffic flow on a high-way
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Hour-variable Cn used in modeling
of traffic flow dynamics
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Encoding of days provides additional
Information for analysis
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Good prediction of Q from the condition
{D, H } Is obtained for normal days

TRAFFIC FLOW RATE : Q

pred; Cgoﬁg

1000 F

Q [carsh]
o o
= o
D o

AN
o
-

b : :
2550 2600 —




Comparison of predicted and observed
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Q [cars/h]

Worse prediction from the condition
{D, H } is obtained for holidays
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Comparison of predicted and
observed flow rate in holidays
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Merging of condition {D(t), H(t)} with past Q
Improves the prediction
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Dependence of < r > on the number
of past Q components in the condition
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Graphic user interface for
prediction of traffic flow
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Forecasting of traffic jam

Problem: Traffic jams on high-ways are developing due
to various disturbances that decrease the road capacity.
Our next aim Is to describe a forecasting method.

Basic information: Properties of the disturbance and
the statistical data about the traffic flow rate.

Mathematical tool: Statistical predictor of traffic flow
rate and road capacity.

Goal: To develop a program for transformation of
predicted traffic flow rate to variables characterizing
jam properties.



Micro-dynamic modeling of
Jam evolution at a bottleneck

Micro-dynamic
model is based

upon driving rules B0
P J
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and time series of
traffic flow rate.

Micro-modeling is
not convenient for
application due to
many trajectories.
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Hint: Apply macro-modeling by continuity equation in which a
boundary condition is determined by the predicted traffic flow



Road capacity Qmax
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Example of jam estimation
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Jam properties are estimated from the given road
capacity Qmax and the predicted input flow Qin (right).

When the input flow surpasses the road capacity:
Qin>0Qmax, a jam starts to evolve - shown on the right.

The number N of cars in a jam (left) is estimated by
Integrating the difference: Qin- Qmax .



GUI for estimation of traffic jam properties

FIELD OF TRAFFIC ACTIVITY
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User sets: the day, hour,
and point of prediction.

The field of traffic activity is
displayed in the top graph.
The predicted time series of
traffic flow rate is displayed
in the bottom right graph.
User also sets: proper
speed, number of lanes,
and selects display of T or
N in jam.

The input and passed traffic
flow rate are indicated in the
right bottom diagram.

The forecast evolution of
jam is shown in the left
diagram.



More advanced description of disturbance,
traffic flow, and jam evolution

From the properties of the disturbance a proper value
of the speed limit can be estimated.

The speed limit provides for the description of the
equilibrium traffic by two fundamental laws.

To describe a variable traffic at a disturbance one has
to solve partial differential equations of traffic field.

Homogenization of congested flow is possible by an
optimal control of speed limit.

More general problem of an optimal traffic control can
be treated by the methods of intelligent control.



Properties of statistical modeling

« Demonstrated prediction of driving conditions
needs no analytical model, but just measured

data.

* The method provides information support for
drivers and winter roads service.



Conclusions

 Demonstrated forecasting of driving conditions
and traffic flows needs no analytical model, but
just measured data.

 Statistical modeling by CA yields rather accurate
prediction of traffic flow rate on a high-way

« Based upon the predicted flow rate and decreased
road capacity the properties of traffic jams at
disturbances on a high-ways can be forecast.
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Stopping distance and friction coefficient

For constant U, : Xo = Xreactt Xpreak =TV + V12 Uy 9 ;

T — reaction time, g — acceleration of gravity.

Generally p depends on velocity v as: pu(v)= u, exp(-v/c)
¢ — decay velocity: ¢ = 85km/h

Due to decay of u(v) the stopping distance is increased:

Xg = TV + exp(0.7v/c) v?/12 u, g

A proper speed limit on slippery road is obtained by equalizing breaking
distances at normal and adverse conditions: Xy, = X

A proper speed limit at decreased visibility is obtained by equalizing stopping
and visibility distance: Xy, = X5



Estimation of speed limit from stopping
distance characteristics

« A proper speed limit on a wet

road iS Obtained by STOPPING DISTANCE ON DRY AND WET PAVEMENT
300 T T T T T T T
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« A proper speed limit at X
decreased visiblility is -
obtained by equalizing
stopping and visibility sl
distance:
Xs2 = Xyis - blue arrow 2w @ @ w1 w0 i

V [km/h]



Characteristics of proper speed limit
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Dependence of proper speed limit on friction coefficient (left)
obtained from various assumptions about breaking distance.

Dependence of proper speed limit on visibility distance (right)
obtained from various assumptions about breaking distance.

From the speed limit the road capacity Qmax can be estimated.



Variables needed for macro-
modeling of traffic dynamics

« Basic variables:

— mean distance between cars: r
— density of cars: po=1Ir
— equilibrium velocity of cars: Ve
— equilibrium flow rate: Qe = pVe

« Parameters and reference variables:
— car length: A=5m, reactiontime: r1=1s
— speed limit:  vo , speedreference:u=A/r
— clear spacing: r- A, propervelocity: w=(r-A)/ T



Equilibrium velocity

Supposition: Equilibrium velocity v, is smaller than
the speed limit: v, < v, and the proper velocity:

Ve S W.

Joint constraint: 1/v, = 1/v, + A/w

Observations yield the weight: A = 3u/w

and the first fundamental law of traffic:
Vo

Ve = Uv
1 T 20
w
From u(p) and w(p) we obtain: v, = v,(p) and

Q.(p) = pv(p)




Fundamental diagrams of equilibrium traffic
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Equations of traffic field: v(x, t), p(x, t)

Velocity adaptation law:

dv Ve—V : :
— = ; relaxation time: T~3t
dt T

Continuity equation:
d9p 4 9(pv) _
ot ox

Traffic source term:
I(x,t) =Q(t) 6(x —x,); Q(t) is forecast



Numerical treatment

Cell dimensions: Ax = A, At=0.1r
Intervals: 0 < x < 0.5km ; O <t <1h
Initial and boundary conditions: p=0 ; v=0

Source term specified by the forecast flow rate Q
centered at rush hour: t = 0.5h.

Transition to non-dimensional variables:
t/1 T, XIAN-X, viIA->V, pA—p, QT—-Q



Specification of a bottleneck

 Position: 0.2km < x < 0.4km

Reduced speed: 0.5 v,

BOTTLENECK REDUCTION FACTOR B
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Dependence of the velocity reduction factor B on x.



Field distributions

FLOW FIELD VELOCITY FIELD DENSITY FIELD

¥ [km]
¥ [km]

0

il 0w 0 1m0 10

] B A - .
t min] t [rmin]

Parameters: v,=130 km/h ; Qmax=1875 veh/h



Application of jam forecasting

Observation: The evolution of traffic jam at the
bottleneck critically depends on the input flow.

Forecasting of its properties is possible based
upon the predicted flow.

Advice: Before installing a bottleneck one can
estimate its influence and diminish traffic

disturbance by a proper adaptation of the
bottleneck structure.



STABILIZATION OF TRAFFIC FLOW
BY THE SPEED LIMIT CONTROL



Basic properties of congested traffic

The maximum of traffic flow Qmax takes place at
some optimal value of density pmax.

The congested traffic at p>pmax IS subject to
dynamic instability that causes evolution of
moving jams.

These jams diminish the road capacity and lead
to detrimental economic consequences.

Consequently, the basic problem of an optimal
control of congested traffic Is to avoid the
Instablility and so to assure homogeneous state.



An optimal control of speed limit

At each density p it is
reasonable to set the
value of speed limit vo
so that the traffic state
corresponds to the
maximum of flow Q. In
this case the state Is
stable and moving jams
do not develop.
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Family of characteristics Q(p,Vo)
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Characteristic of the optimal speed limit

From the family of OPTIMAL VELOCITY LIMIT VERSUS DENSITY

characteristics Q(p,vo) =

we obtain the relation
between density and
the optimal speed

regression

limit. (right) job
A paradox !?! ii‘
With an increasing >
density p the value of 50|

the optimal speed limit
Vo must be properly
decreased if we want
to keep homogeneous

traffic state without q 10 20 0 20 50

moving jams! p [vehicles/km]



More general case in changing environment
and self-controlled system

ENVIRONMENT
Jr o of

SNN PLANT

Il
J

| — input, U — utility, C — control, Q — plant state



Basic problem of intelligent control

Dynamics of the system is determined by:
dQ/dt=F(Q,C) , but not known !!!

Problem: Find the control C=C(1,Q)

that optimizes the system utility: U=U(1,Q,C)
Hint:

1) Apply given examples and use general regression for
modeling of functions: F, C, U

2) Find the optimal utility by reinforcement learning



Conclusions about the traffic control

 Homogenization of congested flow is
possible based upon an optimal control of
speed limit.

* More general problem of an optimal traffic
control can be treated by the methods of
intelligent control.



Prediction of air pollution
ARPV data about PM10

Microsoft Excel - Arpv_data
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Selection of variables used In
modeling predictor of PM10

As given variables we consider: the average wind
velocity — W, humidity — H and average temperature — T.

As hidden variable we consider concentration P=PM10.

Using sample vectors Zn= (W,H,T,P)n from the recorded
data base we create statistical model of the relation
P=G(W,H,T) by the CA estimator.

By using the model we predict hidden P from some given
data W,H,T.
Here the time is used as sample index n.

Agreement between predicted and measured data is
described by the correlation coefficient r and shown in
correlation diagram.



Records of variables used in modeling
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Predicted and observed PM10
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Correlation plot of predicted
and observed PM10
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Properties of statistical modeling

« Demonstrated prediction of driving conditions
needs no analytical model, but just measured

data.

* The method provides information support for
drivers and winter roads service.



Disturbance on a road sector
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Dependence of the velocity Dependence of input
reduction factor B on x flow rate Q on time

Parameters: vo =130km/h , Qmax=1875veh/h
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Traffic flow field
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Distribution of traffic flow field
left — ground plan, right — side view.



Traffic velocity field
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Distribution of traffic velocity field
left — ground plan, right — side view.



Traffic density field
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Distribution of traffic density field
left — ground plan, right — side view.



