
FORECASTING OF TRAFFIC 

FLOWS AND JAMS ON HIGH-WAYS 

IGOR GRABEC 

 
Univerza v Ljubljani  & Amanova d.o.o., Tehnološki park Ljubljana 

 
Optimiranje ruta vozila korištenjem stvarno-vremenskih prometnih podataka,  

30. lipnja 2014, ZUK Borongaj, Fakultet prometnih znanosti u Zagrebu 



How a child copes with a complex traffic? 

Based upon learning! 



Objective of the lecture 

• Problem: Traffic flows are very complex and therefore 

hardly modeled and forecast analytically. Our aim is to 

show how this problem can be solved statistically.  

 

• General solution: Non-parametric regression expressed 

in terms of measured data. 

 

• Examples: Forecasting of traffic flows, road slipperiness 

and jams. 



Statistical treatment 

• Basis of description: Experimentally estimated 

probability density function - PDF.  The kernel of the 

estimator is the instrument scattering function. 

 

• Estimation of relations between measured variables: 

Non-parametric regression determined by the conditional 

mean estimator. 



Statistical estimation of functions from 

measured data by the conditional mean 

o  measured data 

 

f(x,y)  probability density 

 estimated from data 

 

E(y|x)  conditional mean 

 defined by f(x,y) 

 

------  estimated function  

 y(x)=E(y|x) 

 

xg given datum 

 

yh hidden datum  

 estimated by E(y|x)  
 



Basic properties of data in  

the two-dimensional case 

• A vector variable  Z = (X,Y) is considered  

• zi is the instrument output in a continuous joint sample 

space Sz = Sx    Sy of size 2L   2L  

• N measured joint data {z1,…,zN } are given 

• Calibration by a unit w = u   v yields the gaussian 

instrument scattering function: 
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Joint probability density f(x,y) 

• From data samples {(x,y)n ; n= 1... N } the 

probability density is estimated by: 

 

 

 

• The same model is applicable in a multi-

dimensional case, just the number of 

components is increased: z = (x,y,...) 
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Extraction of a law from PDF 

An optimal MSE predictor of a law Y(x)  

is the conditional average CA: 

   dyxyfyxyxYp )(E)(

)(

);(

);(

)(
1

1

1 xSy

xxg

xxgy

xY i

N

i

i
N

j

j

N

i

ii

p 








 











Expressed by data it gets the form: 



Properties of similarity measure Si(x) 
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Si  is a normalized measure of similarity between  

given x and the stored sample value xi  
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Scheme of the predictor resembles  

a radial basis function neural network 

Input x 

Stored data (xi, yi) 

Output y 

  

Responses yi * Si(x) 



Predictor quality 
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Q=1 for an exact prediction: Yp = Y,  

Q=0 for statistically independent Y and Yp  

 

Q is approximately equal to correlation coefficient r 



Prediction of road slipperiness from weather 

forecast in Sweden 

Data: S – Slipperiness 

          P – Precipitation, 

          T – Temperature, 

 

Data provided by: Slippery 

road information system – 

SRIS -  www.sris.nu 



Predicted and original slipperiness 

1 day ahead prediction  

Accounting of past data improves the accuracy of prediction 



Correlation plot of predicted and observed 

slipperiness 

r – correlation coefficient of Xp and X 



Correlation plot of the critical variable:  

Xtr = U(X - 0.5 Xmax) 

r – correlation coefficient of Xtrp and Xtr 



Example: modeling and forecasting  

the time series of traffic flow 

• Codes of day D(t) and hour H(t) are joined with traffic 
flow rate Q(t) in the state vector: 

    Z(t)=(D(t), H(t), Q(t), Q(t-1),…)  

• Samples from the past time series are used to estimate 
the probability distribution of the state vector Z. 

• From given codes and past flow rate, the future flow rate 
is optimally predicted by the conditional mean estimator:                          
Qe(t) = E[Q | D(t), H(t), Q(t-1),…] 

• An optimal combination of condition variables is found by 
analysis of correlation between predicted and observed 
data.  

• Weather data can be included into condition. 



Modeling and forecasting of  

traffic flow on a high-way 

A record of traffic flow rate over a year 



 Hour-variable Ch used in modeling  

of traffic flow dynamics 
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Encoding of days provides additional 

information for analysis 
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Good prediction of Q from the condition  

{D, H } is obtained for normal days 



Comparison of predicted and observed  

flow rate in normal days 

r = 0.98 



Worse prediction from the condition  

{D, H } is obtained for holidays 



Comparison of predicted and  

observed flow rate in holidays 

r = 0.88 



Correlation coefficient 
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Merging of condition {D(t), H(t)} with past Q 

improves the prediction 
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Dependence of < r > on the number  

of past Q components in the condition 



Graphic user interface for 

prediction of traffic flow 

 • User sets:  the day, hour, and 

point of prediction. 

• The field of traffic activity is 

displayed in the top graph. 

• The predicted time series of 

traffic flow rate is displayed in 

the bottom graph.  

• The selected place and hour of 

prediction are marked in graphs 

 

• The next problem is to map the 

predicted flow to parameters of 

jams evolving due to various 

disturbances at critical regions! 



Forecasting of traffic jam 

• Problem: Traffic jams on high-ways are developing due 
to various disturbances that decrease the road capacity. 
Our next aim is to describe a forecasting method.  
 

• Basic information: Properties of the disturbance and 
the statistical data about the traffic flow rate. 
 

• Mathematical tool: Statistical predictor of traffic flow 
rate and road capacity. 
 

• Goal: To develop a program for transformation of 
predicted traffic flow rate to variables characterizing   
jam properties. 

 



Micro-dynamic modeling of  

jam evolution at a  bottleneck 
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Hint: Apply macro-modeling by continuity equation in which a 

boundary condition is determined by the predicted traffic flow 

Micro-dynamic 

model is based 

upon driving rules 

and time series of 

traffic flow rate.  

 

Micro-modeling is 

not convenient for 

application due to 

many trajectories. 



Road capacity Qmax 

Dependence of road capacity Qmax on the  

speed limit vo. 

 



Example of jam estimation 

• Jam properties are estimated from the given road 
capacity Qmax and the predicted input flow Qin (right). 

• When the input flow surpasses the road capacity:    
Qin>Qmax, a jam starts to evolve - shown on the right.  

• The number N of cars in a jam (left) is estimated by 
integrating the difference: Qin - Qmax . 



GUI for estimation of traffic jam properties 

• User sets: the day, hour, 

and point of prediction. 

• The field of traffic activity is 

displayed in the top graph. 

• The predicted time series of 

traffic flow rate is displayed 

in the bottom right graph. 

• User also sets: proper 

speed, number of lanes, 

and selects display of T or 

N in jam. 

• The input and passed traffic 

flow rate are indicated in the 

right bottom diagram. 

• The forecast evolution of 

jam is shown in the left 

diagram. 



More advanced description of disturbance, 

traffic flow, and jam evolution  

• From the properties of the disturbance a proper value 

of the speed limit can be estimated. 

• The speed limit provides for the description of the 

equilibrium traffic by two fundamental laws. 

• To describe a variable traffic at a disturbance one has 

to solve partial differential equations of traffic field. 

• Homogenization of congested flow is possible by an 

optimal control of speed limit. 

• More general problem of an optimal traffic control can 

be treated by the methods of intelligent control. 

 



Properties of statistical modeling 

• Demonstrated prediction of driving conditions 

needs no analytical model, but just measured 

data.  

 

• The method provides information support for 

drivers and winter roads service.  

 



Conclusions 

• Demonstrated forecasting of driving conditions 
and traffic flows needs no analytical model, but 
just measured data.  

 

• Statistical modeling by CA yields rather accurate 
prediction of traffic flow rate on a high-way  

 

• Based upon the predicted flow rate and decreased 
road capacity the properties of traffic jams at 
disturbances on a high-ways can be forecast. 
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Suggested reference for further work 

Aimed at those interested in: 

• adaptive and autonomous 

statistical modeling of natural 

laws from sensory signals,  

• sensory-neural networks,  

• intelligent and self-control,  

• synergetics and informatics.  



Stopping distance and friction coefficient 



Estimation of speed limit from stopping 

distance characteristics 

• A proper speed limit on a wet 
road is obtained by 
equalizing stopping  
distances on dry and wet 
pavement:  

     xst1 = xst2  - black arrow 

 

• A proper speed limit at 
decreased visibility is 
obtained by equalizing 
stopping and visibility 
distance:  

     xst2 = xvis - blue arrow 
     
 
 



Characteristics of proper speed limit 

Dependence of proper speed limit on friction coefficient (left) 

obtained from various assumptions about breaking distance. 

Dependence of proper speed limit on visibility distance (right) 

obtained from various assumptions about breaking distance. 

From the speed limit the road capacity Qmax  can be estimated. 
 



Variables needed for macro-  

modeling of traffic dynamics 



Equilibrium velocity 



Fundamental diagrams of equilibrium traffic 





Numerical treatment 

• Cell dimensions: Δx = λ,  Δt = 0.1τ  

• Intervals: 0 < x < 0.5km ; 0 <t <1h 

• Initial and boundary conditions: ρ=0 ; v=0  

• Source term specified by the forecast flow rate Q  

centered at rush hour: t = 0.5h. 

• Transition to non-dimensional variables: 

• t /τ →Т;  x /λ →X;  v τ /λ →V;  ρ λ →ρ; Q τ →Q 



Specification of a bottleneck 

Dependence of the velocity reduction factor B on x. 



Field distributions 



Application of jam forecasting 

   Observation: The evolution of traffic jam at the 

bottleneck critically depends on the input flow. 

Forecasting of its properties is possible based 

upon the predicted flow.  

 

    Advice:  Before installing a bottleneck one can 

estimate its influence and diminish traffic 

disturbance by a proper adaptation of the 

bottleneck structure. 



STABILIZATION OF TRAFFIC FLOW 

BY THE SPEED LIMIT CONTROL 



Basic properties of congested traffic 

• The maximum of traffic flow Qmax takes place at 

some optimal value of density ρmax.  

• The congested traffic at ρ>ρmax is subject to 

dynamic instability that causes evolution of 

moving jams.  

• These jams diminish the road capacity and lead 

to detrimental economic consequences. 

• Consequently, the basic problem of an optimal 

control of congested traffic is to avoid the 

instability and so to assure homogeneous state.  



An optimal control of speed limit 

At each density 𝜌 it is 

reasonable to set the 

value of speed limit vo  

so that the traffic state 

corresponds to  the 

maximum of flow Q. In 

this case the state is 

stable and moving jams 

do not develop.  
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Family of characteristics Q(ρ,vo) 

--
--

--
--

--
--

--
--

--
--

--
- 

fre flow congested flow 



Characteristic of the optimal speed limit 

From the family of 
characteristics Q(ρ,vo) 
we obtain the relation 
between density and 
the optimal speed 
limit. (right) 

 

A paradox !?!  

With an increasing 
density ρ the value of 
the optimal speed limit  
vo must be properly 
decreased if we want 
to keep homogeneous 
traffic state without 
moving jams! 



More general case in changing environment  

and self-controlled system 

SNN 

I 
C U 

I – input, U – utility, C – control, Q – plant state 

Q 

PLANT 

ENVIRONMENT 

Q 



Basic problem of intelligent control 

• Dynamics of the system is determined by: 

    dQ/dt=F(Q,C) , but not known !!! 

• Problem: Find the control C=C(I,Q) 

    that optimizes the system utility: U=U(I,Q,C) 

• Hint:  

• 1) Apply given examples and use general regression for 

modeling of functions: F, C, U 

• 2) Find the optimal utility by reinforcement learning 



Conclusions about the traffic control 

• Homogenization of congested flow is 

possible based upon an optimal control of 

speed limit. 

 

• More general problem of an optimal traffic 

control can be treated by the methods of 

intelligent control. 

 



Prediction of air pollution  

ARPV data about PM10 



Selection of variables used in  

modeling predictor of PM10 

• As given variables we consider: the average wind 
velocity – W, humidity – H and average temperature – T.  

• As hidden variable we consider concentration P=PM10. 

• Using sample vectors Zn = (W,H,T,P)n  from the recorded 
data base we create statistical model of the relation 
P=G(W,H,T) by the CA estimator. 

• By using the model we predict hidden P from some given 
data W,H,T. 

• Here the time is used as sample index n. 

• Agreement between predicted and measured data is 
described by the correlation coefficient r and shown in 
correlation diagram. 

 

 



Records of variables used in modeling 



Predicted and observed PM10 



Correlation plot of predicted  

and observed PM10 



Properties of statistical modeling 

• Demonstrated prediction of driving conditions 

needs no analytical model, but just measured 

data.  

 

• The method provides information support for 

drivers and winter roads service.  

 



Disturbance on a road sector 

Dependence of input  

flow rate Q on time  

Dependence of the velocity  

reduction factor B on x  

Parameters: vo =130km/h , Qmax=1875veh/h 



Traffic flow field 

Distribution of traffic flow field  

left – ground plan, right – side view. 



Traffic velocity field 

Distribution of traffic velocity field  

left – ground plan, right – side view. 



Traffic density field 

Distribution of traffic density field 

left – ground plan, right – side view. 


