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Kristian Kovačić, Edouard Ivanjko and Hrvoje Gold
Department of Intelligent Transportation Systems

Faculty of Transport and Traffic Sciences
University of Zagreb

Email: kristian.kovacic@fpz.hr, edouard.ivanjko@fpz.hr, hrvoje.gold@fpz.hr

Abstract—Today’s road traffic management systems using in-
telligent transportation systems solutions need real time measure-
ments of various traffic parameters like flow, origin-destination
matrices, vehicle type, etc. Cameras combined with image
processing algorithms are being more and more used as the
sensor capable to measure several traffic parameters. One such
parameter, also important for accurate simulation of road traffic
flow and evaluation of traffic safety, is the driving aggressiveness
factor which can be estimated from the vehicles trajectory. In
this paper an Extended Kalman Filter based approach to estimate
vehicle trajectories on multiple lanes using only one static camera
is described. To test the accuracy of the implemented approach
a synthetic road traffic environment is developed. Real time
capabilities of the approach are tested using real traffic video
footage obtained from Croatian highways.

I. INTRODUCTION

Today’s traffic in urban areas is starting to cause heavy
load to the existing road infrastructure. As road infrastructure
in many cases cannot be modified (lack of build-up space),
different approaches need to be taken in order to optimize
traffic flow. Such approaches consist of applying intelligent
transportation systems (ITS) which main goal is to apply a
holistic approach for solving traffic problems using information
and communication technologies. For optimal traffic control,
ITS based systems need high quality traffic data in real time.
Needed traffic data consists of various parameters such as
traffic flow, distance between vehicles, velocity of vehicles,
vehicle classification, etc. which all can be obtained from
various sensors. Mostly used road sensors are inductive loops
and nowadays video cameras also.

Video sensors or cameras combined with image processing
algorithms are becoming an important approach to todays road
traffic monitoring and control. From the obtained video footage
high level traffic information can be extracted, i.e. incident
detection, vehicle classification, origin-destination (OD) matrix
estimation, etc. This information is crucial in advanced traffic
management systems from the ITS domain. Commercial solu-
tions for traffic monitoring by video cameras provide vehicle
detection and tracking in scenes where there is a small amount
of overlapping between the tracked vehicle and other objects
(infrastructure or other vehicles). Additional drawback is that
they need one camera per lane which is making such systems
rather expensive. Proposed system described in this work
has the main goal to achieve vehicle detection and tracking
using only one camera for several lanes. Such a system can
have a large number of ITS applications where it could be

implemented for driver aggressiveness factor analysis, inci-
dent detection, traffic violation detection, etc. So, more high
level traffic parameters measurements can be made enabling
development of advanced autonomic or cooperative road traffic
control approaches.

In today’s society, where the vast majority of people drive
on a daily basis in order to reach their destinations, aggressive
driving has become a serious issue. Aggressive driving behav-
iors include speeding, driving too close to the car in front,
not respecting traffic regulations, improper lane changing or
weaving, etc. Obtaining such information in most cases is done
by some kind of survey (eg. telephone survey) or by placing
humans to monitor the traffic of a problematic area for a short
amount of time [5]. Classic road sensors like inductive loops
can not measure such driver behavior. Another approach of
analyzing aggressiveness of driver behavior consists of using
computer vision algorithms which process videos obtained
from video cameras. By this approach, data can be obtained in
real time with high accuracy [6]. Interesting data in this case
is the vehicle trajectory on a road segment. By processing
images from traffic video cameras, traffic violation can also
be detected in the image as described in [7]. This system in
combination with other ITS services can be useful for traffic
law enforcement in cooperation with other agencies.

This paper is organized as follows: the second section
describes the algorithm which performs vehicle detection
and localization in the image. The third section describes
the vehicle tracking algorithm which computes the vehicle
trajectory. The fourth section describes optimizations made to
the proposed system to ensure real time capabilities. The fifth
section describes testing results of the proposed system. Paper
ends with conclusion and future work description.

II. VEHICLE DETECTION

The first step in every vehicle detection algorithm beside
importing of an image from a video stream is image pre-
processing. After an image is imported it contains a certain
percentage of noise. Noise complicates the vehicle detection
process and significantly reduces the accuracy of the proposed
system so it needs to be minimized. In [3], a Gaussian blur
filter is used for noise reduction in a video footage. It reduces
the number of details in the image including noise. In the
proposed system a 5 × 5 matrix is used for the implemented
Gaussian blur filter. Workflow of image preprocessing wherein
renderings are distributed between the Central Processing Unit



Fig. 1: Basic workflow of blur image preprocessing filter [1].

(CPU) and the Graphical Processing Unit (GPU) is given in
Fig. 1.

After preprocessing of the imported image, various meth-
ods exist for vehicle detection. They can be divided into three
types: optical flow methods; temporal difference methods; and
background subtraction methods [9]. The system proposed in
this work uses the background subtraction method. Workflow
of the background subtraction method is shown in Fig. 2.
Process consists of creating a background model of the scene
and comparing computed background model with the latest
preprocessed image imported from the video [2]. To create
the background model the following equation is used:

BGk = BGk−1 +


n∑
i=1

sign(Ii−BGk−1)

n

 , (1)

where BGk represents the value of the specific pixel in the
background model for the current frame and BGk−1 is the
value of the specific pixel in the background model for the
previous frame, Ii is the value of a certain pixel in ith image,
and n is the constant number of consecutive images stored
in buffer ranging from the most recently acquired image k to
the last image in the buffer k − n + 1. By comparing men-
tioned pixels in imported images, every pixel in the currently
processed image can be classified. If the difference between
the current image pixel value and the background model pixel
value is larger than a specified threshold constant, the pixel
is classified as a part of a foreground object. Otherwise it is
considered as a part of the background model. The result of
preprocessing and Fb/Bg image segmentation is given in Fig. 3.

Fig. 2: Fg/Bg image segmentation workflow: a) background model
creation, and b) background model and current image comparison [1].

Fig. 3: Original image (a) passed through preprocessing algorithm (b)
and after Fg/Bg segmentation (c).

III. TRAJECTORY ESTIMATION

When a moving vehicle is detected by the vehicle detection
algorithm, its location in the image is obtained also. Detected
vehicle location is given with (x, y) pixel coordinates and it
contains information about the vehicle true location corrupted
with noise. Noise disturbs vehicle tracking algorithm as mea-
sured vehicle location gets shifted for a certain value which is
different for each image. This requires further processing of
measured data.

The approach described in [4] uses data association and
Kalman filtering for further processing of the object location.
A data association algorithm is used to recognize the same
object in series of consecutive images in order to track the
respective vehicle or estimate its trajectory through time. As
the measured object location contains noise, a Kalman filter is
used to filter it. State model of the used Kalman filter is defined
by object center (x, y) coordinates, area and velocity of an
object. The system proposed in [8] uses genetic algorithms for
data association and Kalman filter for trajectory estimation.
Object detection is performed with background subtraction
method based on mixture of Gaussian model [8].

The system proposed in this work processes object loca-
tion using a modified data association algorithm mentioned
in [4] and Extended Kalman Filter (EKF) for trajectory es-
timation. The first step in the data association algorithm is
pixel clustering performed in the latest image obtained from
the vehicle detection algorithm. Pixel clustering combines all
adjacent pixels in the image into clusters. After all clusters are
computed, they are compared with clusters from the previous
image. If there is a positive match between two clusters in two
consecutive images, both clusters are set to belong to the same
object. If a cluster from the latest image has no match with any
of the clusters in the previous image, it is considered to be a
new object. If a cluster from the previous image has no match
with any of the clusters in the latest image, it is considered
that it has left the current scene. Matching criteria for cluster
association in two consecutive images is given by the weights
defined with the following equations:

wdist =1− d− dmin
dmax − dmin

, (2)

warea =1− a− amin
amax − amin

, (3)

wcover=
ais

max(aobj , acl)
, (4)

w =
wdist + warea + wcover

3
, (5)



Fig. 4: Basic workflow of implemented EKF for vehicle trajectory
estimation.

where d is distance between location of the specific cluster
and estimated object location in pixels, dmin and dmax are
minimum and maximum distance between all clusters and the
processed object in pixels, a is difference between the cluster
area (size) and the estimated object area, amin and amax are
minimum and maximum difference between all clusters area
and the estimated object area respectively, ais is intersection
area between cluster and object, aobj is area of the object, and
acl is the cluster area. All areas are expressed in pixels [px].

To compute the distance between the location of a specific
cluster and corresponding estimated object location their geo-
metric centers are used. Cluster and object area are computed
as their surrounding bounding box area. Matching gives a
positive result only for cluster with the highest weight w and
if wcover ≥ 2

3 .

EKF combines measured data with predicted state estimate.
Result of this process can give more accurate trajectory then
the one obtained by using measured data only. Basic workflow
of the system is given in Fig. 4. The system first predicts state
vector xk|k−1 based on the state vector from the previous iter-
ation performed by EKF in the update stage (xk−1|k−1). Then
the measurement obtained by the vehicle detection algorithm
is combined with the latest state vector xk|k−1 in the update
stage. The obtained new state vector xk|k is used in the next
iteration as input to the EKF (xk−1|k−1). State vector can be
defined with the following vector:

x =


xx
xy
xv
xa
xφ
xω

 , (6)

where x is state vector, xx and xy are vehicle x and y
coordinates in the image in [px], xv is velocity in [px/s], xa
is acceleration in [px/s2 ], xφ is angle (direction) in [rad] and
xω is angular velocity of vehicle in 2D camera perspective in
[rad/s].

Measurement vector z can be defined with the following
equation:

z =

[
zx
zy

]
, (7)

where zx and zy represent x and y coordinates of the vehicle
in the image in [px] obtained by vehicle detection algorithm.

Computation in the prediction stage is done by the follow-
ing equations:

f(x) =
xx+xvt cos(xφ)+

xa[xωt sin(xωt+xφ)+cos(xωt+xφ)]
x2
ω

xy +xvt sin(xφ)−xa[xωt cos(xωt+xφ)−sin(xωt+xφ)]
x2
ω

xv +xat
xa
xφ+xωt
xω

 ,
(8)

xk|k−1 = f(xk−1|k−1), (9)

where xk|k−1 is state vector and xk−1|k−1 is state vector from
previous iteration k − 1 computed in update stage and t is
interval (distance) between iteration k and k − 1 expressed in
the number of frames.

After the prediction stage is done, the predicted state
vector is updated with the previous state xk|k−1 and the latest
measurements vector zk. Computation of the new state vector
xk|k is done using the following equations:

h(x) =

[
xx
xy

]
, (10)

yk =zk − h(xk|k−1), (11)

Fk−1 =
∂f

∂x

∣∣∣∣
xk−1|k−1

, (12)

Hk =
∂h

∂x

∣∣∣∣
xk|k−1

, (13)

Pk|k−1=Fk−1 Pk−1|k−1 F
T
k−1 +Qk−1, (14)

Sk =Hk Pk|k−1 H
T
k +Rk, (15)

Wk =Pk|k−1 H
T
k S−1k , (16)

xk|k =xk|k−1 +Wk yk, (17)

Pk|k =(I −Wk Hk) Pk|k−1, (18)

where yk is innovation vector, Pk|k−1 is the covariance matrix
of the predicted state estimate, Fk−1 is the state transition
matrix, Pk−1|k−1 is the covariance matrix of the predicted state
estimate from the previous iteration, Qk−1 is the covariance



Fig. 5: Setting initial state values of EKF by using histograms.

matrix of process noise, Sk is the innovation covariance matrix,
Hk is the observation matrix, Rk is the covariance matrix of
the observation noise, Wk is the Kalman gain matrix and I is
identity matrix.

An important feature of the EKF is that before the first
iteration can be computed, state vector xk−1|k−1 and matrix
Pk−1|k−1 need to be initialized. In the proposed system the
initial values of vector xk−1|k−1 are estimated by a histogram.
Histogram is divided into i× j segments where each segment
covers specific rectangular area of the image. Histogram is
updated in every iteration of the EKF, where computed v, a,
φ, ω components of a state vector xk|k from the EKF are
added to the vector in the corresponding histogram segment.
Histogram segments are determined by reading values of x and
y components of a state vector xk−1|k−1. Every component of
a vector in the histogram segment represents the sum of all
values in all previous iterations. If this sum is divided by the
number of elements which were used in the sum, mean value
can be obtained. In the first iteration of the EKF, values of x
and y components of a state vector xk−1|k−1 are set to values
obtained directly from the vehicle detection algorithm and
therefore they are not processed by the EKF. Other components
of a state vector xk−1|k−1 are set to mean values read from
histogram as shown in the Fig. 5. After initialization, for every
further EKF iteration, the state vector xk−1|k−1 is computed
only by the EKF (histogram values are ignored).

IV. PARALLELIZATION BASED SPEED-UP

The first version of the implemented approach for vehicle
detection has shown to be efficient from accuracy aspect
according to the results given in Tab. 1. To ensure real time
capabilities further development with aspect of using parallel
computing abilities of today’s CPU and GPU architecture
has been done. Basic workflow of the proposed application
which uses multi-threading (MT) and GPU support is shown
in Fig. 6. Algorithms that process every pixel in the image
can be time consuming for CPU even with use of Streaming
SIMD Extensions (SSE) instructions support. Modern GPU
architecture consists of many stream processors that can
process data in parallel execution (SIMD instructions). This
represents main reason for considering use of GPU in further
development of current application. In the currently proposed
system, image preprocessing and vehicle detection algorithm
are entirely performed on GPU through pixel shaders. Pixel
clustering is performed on CPU with MT support which
improves performance of algorithm regarding execution time.

Approach
Vehicle count

Total Lane

Left Right

Overlap
check

Hits 126 65 61

FP / FN 0/6 0/5 0/1

Accuracy 95.6% 92.9% 98.4%

Trajectory
check

Hits 129 68 61

FP / FN 1/4 0/3 1/1

Accuracy 96.2% 95.8% 96.8%

True vehicle count 132 70 62

Table 1: Counting results of the proposed system.

V. RESULTS

The proposed system has been tested using real world road
traffic video footage captured on a highway with two lanes
near the city of Zagreb in Croatia. Camera was mounted above
the highway and passing vehicles were recorded using a top
view camera perspective as given in Fig. 7. Duration of the
test video is 10 [min]. Obtained original video resolution is
1920× 1080 [px] (RGB).

For vehicle detection results verification, two approaches
for vehicle counting were tested. Both are based on markers
(virtual vehicle detectors). Yellow and red rectangle markers
are placed in the bottom part of the scene on each lane as
shown in Fig. 7. Edges of markers are perpendicular to the
image x and y axis. When a vehicle passes through a marker
and a hit is detected, the counter for that marker is incremented.
The first approach checks if an object is passing through a
marker with its trajectory and the second approach performs
check if an intersection between a marker and an object exists.
Both approaches discard all objects whose trajectory direction
is outside of a specific interval. In the performed test, all
objects need to have their direction between 90 − 270 [◦] in
order not to be discarded. Objects also need to be on the
scene for more than 30 frames. The value of the threshold
constant used in Fg/Bg segmentation method is 10 and the
number of consecutive images used when creating background
model (n) is 105. Blue lines in Fig. 7 represent computed
vehicle trajectory. Experimental results are given in Tab. 1. FP
represents false positive and FN represents false negative hits.
True vehicle count is acquired by manually counting all passed
vehicles.

Fig. 6: Proposed workflow based on CPU/GPU computation distribu-
tion.



Fig. 7: Vehicle tracking and counting on two lanes.

Fig. 8: Execution time of the proposed system.

In Fig. 8 execution time is given for various resolutions
tested on a Windows 7 (64bit) computer with CPU Intel
Core i7 - 2,4 GHz, GPU NVIDIA Quadro K1000M and
8 GB RAM. In the experimental testing, both approaches
(overlap and trajectory check) for vehicle counting had the
same execution time. From the acquired results it can be
concluded that real time vehicle detection can be performed
on SVGA 800×600 [px] resolution and lower using a standard
PC computer. On SVGA resolution, 17 [ms] is required to
process a single frame. This enables maximum frame rate of
58 [fps]. At QVGA 320 × 240 [px] resolution, 142 [fps] can
be achieved with 7 [ms] required to process a single frame. It
can also be concluded that the approach with trajectory check
gives better results regarding accuracy than the approach with
overlap check.

For testing of the implemented EKF based vehicle trajec-
tory estimation, a synthetic road traffic video was made in
Autodesk 3ds Max. Video of synthetic environment simulates
passing of one vehicle on a road with two lanes. As the true
position of a vehicle in the synthetic environment is known, the
implemented EKF can be tested for its trajectory estimation

Fig. 9: Comparison of real, measured, mean and EKF vehicle trajec-
tory.

accuracy. In Fig. 9 different trajectories obtained by various
methods are compared. The real trajectory represents move-
ment of vehicle geometric center defined during development
of the synthetic video. The measured trajectory is computed
by taking data (vehicle trajectory) from the vehicle detection
algorithm and adding noise to it in order to simulate values
which would be obtained by processing real world road traffic
video. Noise is defined by standard uniform distribution in
the interval [−2.5, 2.5] and it is added to each vector of the
vehicle trajectory. The mean trajectory is computed by taking
the last 3 x and y coordinates of the measured trajectory and
computing the mean value of them. So measurement noise
can be reduced without significantly affecting vehicle location
estimation accuracy. EKF trajectories are obtained by using
two different state models. The first model is already described
in the previous section. The second model is based on the first
model with the angular velocity component removed.

In Fig. 10, x-axis represents number of frame for which
error is computed and y-axis represents amount of error in

Fig. 10: Comparison of error in measured, mean and EKF vehicle
trajectories.



Fig. 11: Change of covariance matrix Pk|k components.

[px]. Vehicle position error can be computed for any frame
using the following equation:

err(k) =

√(
x
(k)
r − x

(k)
f

)2
+
(
y
(k)
r − y

(k)
f

)2
, (19)

where k is the frame number, x(k)r and y(k)r are real measured
values in [px] of x and y coordinates for specific trajectory
vector, x(k)f and x

(k)
f are filtered values in [px] (using mean

value method or EKF) of x and y coordinates for specific tra-
jectory vector. Mean error value for the measured trajectory is
48.4 [px], for trajectory obtained by mean method is 50.2 [px],
for trajectory obtained by EKF with constant vehicle direction
angle φ is 35.9 [px] and EKF with variable vehicle direction
angle φ is 31.2 [px].

Covariance matrix Pk|k changes through 39 frames as
shown in Fig. 11, where blue and green lines are x and
y coordinates, red line is velocity component, cyan is ac-
celeration, purple is angle and yellow is angular velocity
component of the uncertainty matrix Pk|k. From the Fig. 11 it
can be concluded that estimate covariances for y coordinate,
angle and angular velocity have no rapid change in their
values over whole vehicle trajectory. Opposite to that estimate
covariances for velocity and acceleration decrease rapidly over
time. Estimated covariance for x coordinate increases rapidly
till it approximately reaches the value of estimate covariance
for y coordinate. Vehicle velocities and acceleration can be
estimated more accurately than the (x, y) vehicle coordinates.
This can be explained that tracked vehicle moves in the video
and enlarges during tracking. So, location measurements are
more accurate when the vehicle is detected (vehicle enters the
scene) than when it leaves the scene.

In Fig. 7 estimated trajectories of several vehicles on
multiple lanes can be seen. The presented processed traffic
scene proofs that the implemented system can successfully
simultaneously detect and track vehicles on multiple lanes in
real time.

VI. CONCLUSION

In this paper a system for vehicle detection and tracking
on multiple lanes based on computer vision is proposed. The

developed system uses only one camera to detect and track
vehicles on multiple lanes. It solves drawbacks of the currently
available commercial systems that use one camera per road
lane. The first vehicle detection results are promising with an
accuracy of over 95%.

Additionally, vehicle trajectory estimation has been added
to the existing system. Because the trajectory of a vehicle
contains a large ratio of noise, trajectory is filtered by EKF. For
testing of the implemented EKF filter, synthetic environment
was developed in which groundtruth vehicle trajectory is
known. From the testing results in which the groundtruth data
is compared with the computed data, it can be concluded
that EKF can improve trajectory estimation accuracy. As the
proposed system is computationally expensive it was optimized
by implementing ability to execute specific image process-
ing algorithms (preprocessing, Fg/Bg image segmentation)
on GPU. The algorithm for pixel clustering which was too
complex to execute on GPU was optimized by implementing
CPU MT support.

Future work consists of developing a tracking system which
would be able to perform license plate recognition and vehicle
type classification of detected vehicles. So additional data can
be obtained from which further analysis of the road traffic
video footage could be made.
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