Real Time Vehicle Country of Origin Classification Based on Computer Vision

Kristian Kovačić, Edouard Ivanjko, Sergio Varela*

University of Zagreb

- University of Zagreb, Croatia
- Established in 1669.
- 29 faculties and 3 academies

- 4.850 research staff members and 50.000 students
- Faculty of Transport and Traffic Sciences
- Established in 1984.
- 15 departments
- Cover all transport modes, logistics, ITS, aeronautics
- 100 research staff members / 2.200 students
- Publisher of the journal
- PROMET - Traffic \& Transportation

- Cited in SCIE, TRIS, Geobase, FLUIDEX, and Scopus

Outline

- Introduction
- Problems and approaches
- Vehicle classification
- Vehicle detection and license plate recognition
- Vehicle detection speed up
- Experimental results
- Conclusion and future work

Introduction

- Faculty of Transport and Traffic Sciences - Computer Vision Group
- Developing algorithms for road traffic analysis based on computer vision
- Applications
- Traffic management
- Dynamic behaviour of a road traffic system derived from known parameters
- Traffic flow between nodes in a traffic network
- Driver information system
- Origin-Destination analysis of traffic on highways
- Computation of current and estimated OD matrices of a road traffic network
- Possibility to estimate the route of a traced vehicle

Problems and approaches

- Problems of manual measurement of traffic parameters
- Inaccurate data due to human error
- Impracticable to measure data $24 / 7$
- Measuring number of passed vehicles on complex intersections requires a large number of people for counting
- Increase need in human resources
- Impracticable to measure complex traffic parameters (vehicles queue, vehicle velocity, distance between vehicles)
- Sensors for measuring traffic parameters
- Pneumatic road tube sensors and piezoelectric sensors
- Inductive loops and magnetic sensors
- Radars, LIDARs
- Video cameras (color, IR, multi-spectral)

- Current commercial systems use one camera per lane
- Detection and tracking of vehicles
- Based on performing segmentation between objects of interest and noninterest objects using

ARH

Tattile various image processing methods ($\mathrm{Fg} / \mathrm{Bg}$ image segmentation, optical flow, Haar method, Hough method)

- Estimation of vehicle trajectory
- Based on knowing vehicle location at certain time
- Describing vehicle movement by mathematical models which take into account vehicle dynamics
- Estimating next possible location (trajectory) of the vehicle

Problems and approaches
 OD matrix analysis

- Trajectory of moving vehicle through road traffic network (from node A to node B)
- Providing unique identification to each vehicle that is passing through road traffic network using automatic number (license) plate recognition
- Reduction of false positive/negative vehicles using additional statistical information given from origindestination (OD) matrix

Vehicle classification System architecture

Vehicle detection

- Application objectives
- Detection of vehicles in video
- Tracking static vehicles (if vehicle stops to move)
- Vehicle license plate recognition for further traffic analysis
- Vehicle detection
- Pre-processing image imported from video with Gaussian blur filter
- Passing image through foreground / background image segmentation algorithm
- Finding contours which localize regions of detected vehicles

Vehicle detection Speed up

- Disadvantages of currently developed application
- Vehicle detection depends on license plate recognition
- High requirements for system resources (slow execution of algorithm due to sub-optimal approach)
- Optimization approach
- Executing algorithms on GPU as much as possible
- Adding support for CPU SIMD instructions to algorithms which are incapable to run on GPU
- Performing computations using multiple threads
- Parallelization of image processing algorithms

Experimental results Accuracy and execution time

- Accuracy

Approach	Total evaluation time [min]	Real vehicle Count	Corrected Vehicles	Wrong Vehicles	Correct/Real [\%]
Analysis with sharpener filter	30	534	507	27	94%
Analysis without sharpener filter	30	532	515	17	96%

- Execution time

Approach	Contours for loop		Processing time of an image with vehicle	
	Avg time $[\mathrm{ms}]$	Min time [ms]	Avg time [ms]	Min time [ms]
Single-thread	909	100	904	100
Multi-thread	5	4	14	13

Experimental results Vehicle classification

- Extracted classification of vehicles by its country of origin
- Test video length - 30 [min]

COUNTRY	NUMBER OF VEHICLE	RATIO [\%]
Germany	166	31.2
Poland	88	16.5
Austria	83	15.6
Czech Republic	72	13.5
Croatia	17	8.8
Slovenia	13	3.2
Turkey	11	2.4
Slovakia	35	6.8
Others	$\mathbf{5 3 2}$	$\mathbf{1 0 0}$
Total		

Experimental results Arised problems

- Overlapping vehicles cause false positive and false negative detections
- Environment conditions (sun reflection, rapid lighting changes), camera vibrations caused by strong wind or passing of large vehicles

Conclusion
 Future work

- Developed application has shown possibility of extracting a large number of information from video footage
- License plate number - vehicle country of origin, vehicle trajectory, flow, number of vehicles, etc.
- One camera can be used for multiple lanes
- First results promising
- Further development of the application is currently in progress and it consists of following goals
- Estimation of vehicle trajectory on a road traffic network
- Detection and analysis of vehicle queue
- Determination of vehicle velocity
- Computation of origin-destination matrix of large road traffic network for purposes of traffic modelling

Acknowledgment

This research has been partially supported by

- University of Zagreb grant 2013-ZUID-21,5.4.1.2
- EU COST action TU1102
- European Union from the European Regional Development Fund by the project IPA2007/HR/16IPO/001-040514 "VISTA - Computer Vision Innovations for Safe Traffic"
- Leading institution University of Zagreb, Faculty of electrical engineering and computing
- University of Zagreb, Faculty of Transport and Traffic Sciences

Real Time Vehicle Country of Origin Classification Based on Computer Vision

Kristian Kovačić, Edouard Ivanjko, Sergio Varela*

