

Real Time Vehicle Country of Origin Classification Based on Computer Vision

Kristian Kovačić, **Edouard Ivanjko**, Sergio Varela*

* LUNDS UNIVERSITET, SWEDEN

UNIZG-FTTS

- University of Zagreb, Croatia
 - Established in 1669.
 - 29 faculties and 3 academies

- 4.850 research staff members and 50.000 students
- Faculty of Transport and Traffic Sciences
 - Established in 1984.
 - 15 departments
 - Cover all transport modes, logistics, ITS, aeronautics
 - 100 research staff members / 2.200 students
 - Publisher of the journal
 - PROMET Traffic & Transportation
 - Cited in SCIE, TRIS, Geobase, FLUIDEX, and Scopus

Outline

- Introduction
- Problems and approaches
- Vehicle classification
- Vehicle detection and license plate recognition
- Vehicle detection speed up
- Experimental results
- Conclusion and future work

- Faculty of Transport and Traffic Sciences Computer Vision Group
 - Developing algorithms for road traffic analysis based on computer vision
- Applications
 - Traffic management
 - Dynamic behaviour of a road traffic system derived from known parameters
 - Traffic flow between nodes in a traffic network
 - Driver information system
 - Origin-Destination analysis of traffic on highways
 - Computation of current and estimated OD matrices of a road traffic network
 - Possibility to estimate the route of a traced vehicle

UNIZG-FTTS

• Problems of manual measurement of traffic parameters

- Inaccurate data due to human error
- Impracticable to measure data 24/7
- Measuring number of passed vehicles on complex intersections requires a large number of people for counting
 - Increase need in human resources
- Impracticable to measure complex traffic parameters (vehicles queue, vehicle velocity, distance between vehicles)
- Sensors for measuring traffic parameters
 - Pneumatic road tube sensors and piezoelectric sensors
 - Inductive loops and magnetic sensors
 - Radars, LIDARs
 - Video cameras (color, IR, multi-spectral)

- Current commercial systems use one camera per lane
- Detection and tracking of vehicles
 - Based on performing segmentation between objects of interest and noninterest objects using various image processing

methods (Fg/Bg image segmentation, optical flow, Haar method, Hough method)

- Estimation of vehicle trajectory
 - Based on knowing vehicle location at certain time
 - Describing vehicle movement by mathematical models which take into account vehicle dynamics
 - Estimating next possible location (trajectory) of the vehicle

UNIZG-FTTS

- Trajectory of moving vehicle through road traffic network (from node A to node B)
 - Providing unique identification to each vehicle that is passing through road traffic network using automatic number (license) plate recognition
 - Reduction of false positive/negative vehicles using additional statistical information given from origin-destination (OD) matrix

SDK for license plate

recognition (LPR)

- Application objectives
 - Detection of vehicles in video
 - Tracking static vehicles (if vehicle stops to move)
 - Vehicle license plate recognition for further traffic analysis
- Vehicle detection
 - Pre-processing image imported from video with Gaussian blur filter
 - Passing image through foreground / background image segmentation algorithm
 - Finding contours which localize regions of detected vehicles

- Disadvantages of currently developed application
 - Vehicle detection depends on license plate recognition
 - High requirements for system resources (slow execution of algorithm due to sub-optimal approach)

Optimization approach

- Executing algorithms on GPU as much as possible
- Adding support for CPU SIMD instructions to algorithms which are incapable to run on GPU
- Performing computations using multiple threads
 - Parallelization of image processing algorithms

• Accuracy

Approach	Total evaluation time [min]	Real vehicle Count	Corrected Vehicles	Wrong Vehicles	Correct/ _{Real} [%]
Analysis with sharpener filter	30	534	507	27	94%
Analysis without sharpener filter	30	532	515	17	96%

• Execution time

Approach	Contours for loop		Processing time of an image with vehicle	
	Avg time [ms]	Min time [ms]	Avg time [ms]	Min time [ms]
Single-thread	909	100	904	100
Multi-thread	5	4	14	13

- Extracted classification of vehicles by its country of origin
 - Test video length 30 [min]

COUNTRY	NUMBER OF VEHICLE	RATIO [%]
Germany	166	31.2
Poland	88	16.5
Austria	83	15.6
Czech Republic	72	13.5
Croatia	47	8.8
Slovenia	17	3.2
Turkey	13	2.4
Slovakia	11	2.0
Others	35	6.8
Total	532	100

- Overlapping vehicles cause false positive and false negative detections
- Environment conditions (sun reflection, rapid lighting changes), camera vibrations caused by strong wind or passing of large vehicles

- Developed application has shown possibility of extracting a large number of information from video footage
 - License plate number vehicle country of origin, vehicle trajectory, flow, number of vehicles, etc.
- One camera can be used for multiple lanes
- First results promising
- Further development of the application is currently in progress and it consists of following goals
 - Estimation of vehicle trajectory on a road traffic network
 - Detection and analysis of vehicle queue
 - Determination of vehicle velocity
 - Computation of origin-destination matrix of large road traffic network for purposes of traffic modelling

Acknowledgment

This research has been partially supported by

- University of Zagreb grant 2013-ZUID-21,5.4.1.2
- EU COST action TU1102
- European Union from the European Regional Development Fund by the project IPA2007/HR/16IPO/001-040514 "VISTA - Computer Vision Innovations for Safe Traffic"
 - Leading institution University of Zagreb, Faculty of electrical engineering and computing
- University of Zagreb, Faculty of Transport and Traffic Sciences

Real Time Vehicle Country of Origin Classification Based on Computer Vision

Kristian Kovačić, Edouard Ivanjko, Sergio Varela*

* LUNDS UNIVERSITET, SWEDEN

UNIZG-FTTS

