

COMPUTER VISION AND INTELLIGENT SYSTEMS IN ROAD TRAFFIC CONTROL

<u>Edouard Ivanjko,</u> Martin Gregurić, Kristian Kovačić, Sadko Mandžuka, Hrvoje Gold

- University of Zagreb, Croatia
 - Established in 1669.
 - 29 faculties and 3 academies

- 4.850 research staff members and 50.000 students
- Faculty of Transport and Traffic Sciences
 - Established in 1984.
 - 15 departments
 - Cover all transport modes, logistics, ITS, aeronautics
 - 100 research staff members / 2200 students
 - Publisher of the journal
 PROMET Traffic&Transportation
 - Cited in SCIE, TRIS, Geobase, FLUIDEX, and Scopus

Outline

- Introduction
- Computer vision in road traffic
- Experimental results
- Ramp metering
- Intelligent cooperative ramp metering
- Experimental results
- Conclusion & Future work

- Today's local urban roads, urban highways and they interconnections cannot fulfil desired level of service (LoS) due congestions caused by
 - Large demand for mobility at peak hours
 - Lack of space for infrastructural build-up
 - Urban network serves local and transit traffic
- Solution in intelligent transport systems (ITS) based traffic control systems
 - Ramp metering
 - Variable Speed Limit Control (VSLC)
 - Optimization of traffic lights signal planes
 - Various driver information systems, etc.

- ITS state-of-the-art solution for urban traffic control
 - Application of hybrid intelligent system in control
 - Cooperation between several traffic control systems
- Reliable real-time measurements of traffic parameters is required for ITS control systems
- State-of-the-art solution is in real-time video surveillance and computer vision application
 - Several traffic parameters can be estimated from road traffic video footage
 - Origin-Destination (OD) matrices
 - Vehicle class, trajectories and velocity
 - Estimation of vehicle country of origin using license plate recognition, etc.

- Weather conditions
- One camera per road lane
- Tracking vehicles on multiple lanes simultaneously with only one camera
- Preprocessing algorithm
 - Noise reduction
 - Gaussian filter with 5x5 matrix

Computer vision in road traffic

Background subtraction method (a) Creation of background image model (b) Detection of foreground objects

- Check if adjacent pixels exist and combine them into cluster
- If cluster area $A \leq threshold$, remove cluster

$$w_{dist} = 1 - \frac{d - d_{min}}{d_{max} - d_{min}}$$

• Object tracking method

Compare all objects in the new frame with objects in the previous frame and combine only those with maximal weight *w*

Postprocessing object location

- Extended Kalman Filter (EKF)
- Histogram for computing average values of position (*x*, *y*), velocity (*v*), acceleration (*a*), direction (φ), angular velocity (ω) based on EKF output
- Setting initial values of state vector *x* by histogram

$$w_{area} = 1 - \frac{a - a_{min}}{a_{max} - a_{min}}$$

$$w_{cover} = \frac{a_{is}}{max(a_{obj}, a_{cl})}$$

Optimization for real-time execution

- Executing algorithms on GPU as much as possible
- Adding support for CPU SIMD instructions to algorithms which are incapable to run on GPU
- Performing computations using multiple threads
 - Parallelization of image processing algorithms

- Vehicle counting approaches
 - Check if vehicle bounding box / trajectory is overlapping with one of virtual markers

Approach		Vehicle count per lane				
		Total	Left	Right		
Overlap check	Hits	126	65	61		
	FP / FN	0/6	0/5	0/1		
	Accuracy	95,6%	92,9%	98,4%		
Trajectory check	Hits	129	68	61		
	FP / FN	1/4	0/3	1/1		
	Accuracy	96,2%	95,8%	96,8%		
True vehicle count		132	70	62		

- Simulation of 3D road traffic scene with known parameters
 - Synthetic environment designed in Autodesk 3ds Max
 - Noise added to measured trajectory

- Uncontrolled platooned vehicle entry from onramps (urban arterial roads) into mainstream (urban highway) induce
 - Slowdowns in mainstream
 - Downstream bottleneck
 - Traffic "shock wave" upstream back-propagation
 - Queues at on-ramps
 - Traffic can spill over onto urban arterial roads

Urban highway control approach <u>ramp metering</u>

- Special road signals (traffic lights) at on-ramps
- Ramp metering algorithm determines the "access rate reduction," according to traffic data from sensors
- Ramp metering control algorithm

» *Fuzzy* logic based, MATALINE, etc.

- Matlab based macroscopic highway traffic simulator for ramp metering evaluation
 - Based on the Asymmetric Cell Transmission Model
- Original version contains local ramp metering only
- Augmentation for cooperative ramp metering and VSLC

- Fluctuations in traffic demand is a significant traffic problem on urban highways
 - One metering strategy cannot respond on every traffic situation
- Learning framework for intelligent cooperative ramp metering
 - Summarized knowledge from several different ramp metering strategies into one control structure
 - Cooperation between different ramp metering strategies

- Application of hybrid intelligent system in ramp metering control
 - Adaptive neural-fuzzy inference system (ANFIS)
 - Neural Network (ANN) learning component
 - Fuzzy Inference System (FIS) uncertainty component
 - ANFIS algorithm learned using several standard ramp metering algorithms
 Ramp metering algorithms
 - HELPER cooperative knowledge
 - ALINEA local control
 - SWARM predictive component

UNIZG-FTTS

- Zagreb bypass urban highway, section between nodes Lučko and Jankomir as use case
- Congestion created near node *Lučko*
- Quality measures
 - Travel time (TT)
 - Delay

- LoS categorization according to HCM 2010
- Average on-ramp queue length

No Control	No Control	ALINEA	SWARM	HELPER	VSLC	HELPER + VSLC	ANFIS
LoS	E	D	А	С	E	С	В
Average TT [min]	14.32	5.61	3.99	4.41	11.01	4.63	6.42
Average Delay [vh]	5.42	20.53	24.18	10.94	4.51	7.62	6.75
Average Queue [v]	0	79	89	58	13	57	38

UNIZG-FTTS

• System based on computer vision methods is capable to

- Detect and track vehicles
- Provide traffic flow measure
- Easily be integrated in existing road traffic measurement systems
- Obtain traffic data from multiple lanes using only one camera
- System is tested on video footage from Croatian highways
 - Obtained accuracy of the system is over 95%
- Intelligent cooperative ramp metering algorithm realized through an ANFIS control structure
 - Produce balanced ratio between TT and Delay, second best LoS

Cooperation between ramp metering and VSLC

- Improved results compared to the standalone VSLC and HELPER application
- Future work
 - Vehicle type classification from road traffic video footage
 - Augmentation of ANFIS learning with on-line learning

UNIZG-FTTS

The research reported in this paper is partially funded by the European Union from the FP7 - Collaborative Project: "Intelligent Cooperative Sensing for Improved traffic efficiency – ICSI" (FP7-317671), from the European **Regional Development Fund by the project** IPA2007/HR/16IPO/001-040514 "VISTA - Computer Vision **Innovations for Safe Traffic**" and supported by the <u>EU</u> COST action TU1102 "Towards autonomic road transport support systems"

COMPUTER VISION AND INTELLIGENT SYSTEMS IN ROAD TRAFFIC CONTROL

<u>Edouard Ivanjko,</u> Martin Gregurić, Kristian Kovačić, Sadko Mandžuka, Hrvoje Gold

Overall execution time

Execution time distribution per image processing component

- Standalone urban highway control strategies not efficient enough to resolve congestions
- Cooperation between ramp metering and
 - VSLC, Selectively prohibiting lane changes, Vehicle On-Board-Unit (OBU) and Driver information systems

- Cooperation between HELPER and VSLC produces smaller Delay compared to standalone HELPER algorithm
- ANFIS produces lowest Delay values compared to other ramp metering algorithms

