

UNIVERSITY OF ZAGREB FACULTY OF TRANSPORT AND TRAFFIC SCIENCES DEPARTMENT OF INTELLIGENT TRANSPORT SYSTEMS

< □ > < @ > < 注 > < 注 > ... 注

Electric vehicle routing problem with single or multiple recharges

Tomislav Erdelić, Tonči Carić, Martina Erdelić, Leo Tišljarić

13th International Scientific Conference on Sustainable, Modern and Safe Transport (TRANSCOM 2019), High Tatras, Novy Smokovec -Grand Hotel Bellevue, Slovak Republic, May 29-31, 2019

May 29, 2019

Introduction Model Methodology Results Conclusion & Future research

OUTLINE

INTRODUCTION

Model

Methodology

Results

Conclusion & Future Research

æ

- E

A⊒ ▶ ∢ ∃

Model Methodology Results nclusion & Future research VEHICLE ROUTING PROBLEM (VRP) ELECTRIC VEHICLES (EVS) ELECTRIC VEHICLE ROUTING PROBLEM (E-VRP)

WHAT IS VRP?

Model Methodology Results nclusion & Future research VEHICLE ROUTING PROBLEM (VRP) ELECTRIC VEHICLES (EVS) ELECTRIC VEHICLE ROUTING PROBLEM (E-VRP)

WHAT IS VRP?

Model Methodology Results nclusion & Future research VEHICLE ROUTING PROBLEM (VRP) ELECTRIC VEHICLES (EVS) ELECTRIC VEHICLE ROUTING PROBLEM (E-VRP)

WHAT IS VRP?

Model Methodology Results nclusion & Future research **Vehicle routing problem (VRP)** Electric vehicles (EVs) Electric vehicle routing problem (E-VRP)

WHAT IS VRP?

E

Introduction Model Methodology Results DNCLUSION & FUTURE RESEARCH

VEHICLE ROUTING PROBLEM (VRP) ELECTRIC VEHICLES (EVS) ELECTRIC VEHICLE ROUTING PROBLEM (E-VRP)

A⊒ ▶ ∢ ∃

WHY ELECTRIC VEHICLES?

• Pros

- Do not have local GHG emission
- Produce minimal noise
- Can be powered from renewable energy sources
- · Independent on the fluctuating fossil oil prices
- Lower maintenance cost

Introduction Model Methodology Results Disclusion & Future research

WHY ELECTRIC VEHICLES?

• Pros

- Do not have local GHG emission
- Produce minimal noise
- Can be powered from renewable energy sources
- · Independent on the fluctuating fossil oil prices
- Lower maintenance cost

• Cons

- Battery capacity \rightarrow Range 160 240 km \rightarrow operational limitations: frequent visits to charging stations
- Range anxiety
- Purchase price
- · Battery lifetime and price

Model Methodology Results NCLUSION & FUTURE RESEARCH VEHICLE ROUTING PROBLEM (VRP) ELECTRIC VEHICLES (EVS) ELECTRIC VEHICLE ROUTING PROBLEM (E-VRP)

WHAT IS E-VRP?

4/16

Model Methodology Results Nclusion & Future research VEHICLE ROUTING PROBLEM (VRP) ELECTRIC VEHICLES (EVS) ELECTRIC VEHICLE ROUTING PROBLEM (E-VRP)

WHAT IS E-VRP?

FIGURE: E-VRPTW: v = 3, $t_d = 275.13$

E-VRPTW - MIXED INTEGER LINEAR PROGRAM

• Schneider et al. [1], formulated E-VRPTW as MILP eqs. (1-9)

Name	Description
$V = \{1, \dots, N\}$	Set of geographically scattered customers
F	Set of CSs for BEVs
F'	Virtual set of CSs
β	Number of virtual CSs per CS
0, <i>N</i> + 1	Depot
$A = \{(i,j) i, j \in V_{0,N+1} \cup F', i \neq j\}$	Set of arcs
$x_{ij} = \{0, 1\}$	Binary variable
C, Q	Load and battery capacity
r, g	Energy consumption and recharge rate
s_i , $[e_i, I_i]$, $i \in V_{0,N+1} \cup F'$	Service time and time window
$q_i, i \in V_{0,N+1} \cup F'$	Load demand
$ au_i$, u_i , y_i , $i \in V_{0,N+1} \cup F'$	Arrival time, remaining load and bat. cap.

TABLE: E-VRPTW - MILP notations

E-VRPTW - MIXED INTEGER LINEAR PROGRAM (MILP)

· < 同 > < 三 > < 三 >

E-VRPTW - MIXED INTEGER LINEAR PROGRAM

$$\min \sum_{j \in V \cup F'} x_{0j} \tag{1}$$

$$\min \sum_{i \in V_0 \cup F', j \in V_{N+1} \cup F', i \neq j} d_{ij} x_{ij}$$
(2)

$$(t_{ij}+s_i+l_0)x_{ij}+\tau_i-\tau_j \le l_0, \forall i \in V_0, \forall j \in V_{N+1} \cup F', i \ne j$$
(3)

$$(t_{ij}+l_0+gQ)x_{ij}-gy_i+\tau_i-\tau_j \le l_0, \forall i \in F', \forall j \in V_{N+1} \cup F', i \ne j$$

$$\tag{4}$$

$$e_j \le \tau_j \le I_j, \forall j \in V_{0,N+1} \cup F'$$
(5)

$$(q_i + C)x_{ij} + u_j - u_i \le C, \forall i \in V_0 \cup F', \forall j \in V_{N+1} \cup F', i \ne j$$
(6)

$$0 \le u_j \le C, \forall j \in V_{0,N+1} \cup F'$$
(7)

$$(rd_{ij}+Q)x_{ij}+y_j-y_i \le Q, \forall j \in V_{N+1} \cup F', \forall i \in V, i \ne j$$
(8)

$$0 \le y_j + rd_{ij}x_{ij} \le Q, \forall j \in V_{N+1} \cup F', \forall i \in 0 \cup F', i \ne j$$

$$(9)$$

INITIAL SOLUTION

Algorithm 1 k-Time Oriented Nearest Neighbor Heuristic (k - TONNH)

- 1: Open new vehicle and set the current customer *i* to be the depot
- 2: while there are no unserved customers do
- Initialize set C_1 with unrouted customers that are reachable from *i* according to vehicle load 3. capacity, customer time window and depot time window
- Initialize set C_2 to be an empty set 4:
- for each customer i in C_1 do 5:
- 6: if there is enough energy to reach *j* from *i* and then the depot from *j* then
- 7: Add *i* to the C_2
- else if the segment from i to j and then from j to the depot is feasible by inserting 8. nearest CS between the depot and i and/or between i and j and/or between j and the depot then 9:
 - Add j to the C_2 with appropriate placement of CS
- end if 10.
- 11: end for
- 12: if C_2 is not empty then
- From k customers in C_2 that minimize the function $\delta_1 d_{ij} + \delta_2 t_{ii}^s + \delta_3 t_{ii}^w$ select one at 13. random, add it to the current vehicle and set the selected customer as customer i
- else 14:
- 15: Close the current vehicle, open new vehicle and set the current customer i to be the depot
- 16. end if
- 17: end while

イロト 人間ト イヨト イヨト

э

Introduction Initial sol Model Initial sol Methodology Improveme Results ALNS - All Conclusion & Future research ALNS - ex.

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

EXAMPLE - k = 3

7/16

INTRODUCTION INTL MODEL INTL METHODOLOGY IMPR ESSUITS ALD CONCLUSION & FUTURE RESEARCH ALN

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

INTRODUCTION INITIAL SS Model Initial SS METHODOLOGY IMPROVEM RESULTS ALNS - E CONCLUSION & FUTURE RESEARCH ALNS - E

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

EXAMPLE - k = 3

Introduction II Model II Methodology II Results A Conclusion & Future research A

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

Example - k = 3

T. Erdelić et al. TRANSCOM 2019 - May 29, 2019

INTRODUCTION INTILLS Model Initals Methodology Improve Results ALNS -Conclusion & Future research ALNS -

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

INTRODUCTION INIT MODEL INIT METHODOLOGY IMPI RESULTS ALD CONCLUSION & FUTURE RESEARCH ALD

Initial solution - K-TONNH Initial solution - example Improvement heuristics - ALNS ALNS - Algorithm ALNS - example

Introduction Inital Model Inital Methodology Improv Results ALNS Conclusion & Future research ALNS

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

Introduction In Model In **Methodology Im** Results Al clusion & Future research Al

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

IMPROVEMENT HEURISTICS

- Adaptive Large Neighborhood Search (ALNS)
 - Adaptive removal and insertion of users and stations in the solution removal and insertion operators

- 4 伺 ト 4 ヨ ト 4 ヨ ト

INTRODUCTION INITIAL S MODEL INITIAL S METHODOLOGY IMPROVE RESULTS ALNS - . 21USION & FUTURE RESEARCH ALNS - 1

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

IMPROVEMENT HEURISTICS

• Adaptive Large Neighborhood Search (ALNS)

• Adaptive removal and insertion of users and stations in the solution - removal and insertion operators

	Removal	Insertion			
User	Station	Route	User	Station	
random worst distance worst time shaw proximity-based demand-based time-based zone Options: with prece	random worst distance eding/succeeding	greedy NRR	greedy regret-2 regret-3 time-based zone	greedy best greedy with com.	

TABLE: Removal and insertion operators

Image: A math a mat

Introduction Int Model Int Methodology Im Results AL clusion & Future research AL

INITIAL SOLUTION - K-TONNH INITIAL SOLUTION - EXAMPLE IMPROVEMENT HEURISTICS - ALNS ALNS - ALGORITHM ALNS - EXAMPLE

IMPROVEMENT HEURISTICS

• Adaptive Large Neighborhood Search (ALNS)

- Adaptive removal and insertion of users and stations in the solution removal and insertion operators
- The operators selected in next iterations are selected by roulette wheel strategy based on their probability
- After each iteration for each removal and insertion operator (except the GNRR) scores are added (σ₃ ≤ σ₂ ≤ σ₁):
 - σ_1 if new best solution is found
 - σ_3 if new solution is better than the current solution
 - σ₂ if new solution is worse than the current solution but is accepted due to the simulated annealing acceptance criteria

Image: A math a mat

INTRODUCTION INITIAL SOLUTION - K-TONNH Model Initial Solution - example Methodology Improvement heuristics - ALNS Results ALNS - Algorithm Lusion & Future research ALNS - example

ALNS - Algorithm

Algorithm 2 Adaptive Large Neighborhood Search (ALNS) [2]

- 1: while iteration limit not met do
- 2: Every N_{RR} iterations select and perform route removal and customer insertion procedures coupled with greedy station insertion to make the solution energy feasible
- 3: Every N_{SR} iterations select and perform station removal and insertion procedures
- 4: Select and perform customer removal
- 5: if partial solution is energy infeasible then
- 6: Perform greedy station insertion to make the partial solution energy feasible
- 7: end if
- 8: if partial solution is energy feasible then
- 9: Select and perform customer insertion
- 10: end if
- 11: if solution is feasible then
- 12: Apply acceptance criteria to accept or reject the solution
- 13: end if
- 14: Every N_C/N_S iterations update operators weights and probabilities
- 15: end while

イロト イヨト イヨト イヨト

INTRODUCTION INITIAL SOLUTION - K-TONN Model Initial solution - example **Methodology** Improvement heuristics -Results ALNS - Algorithm Conclusion & Future research ALNS - example

EXAMPLE

Introduction Initial solution - K-TON Model Initial solution - exampl Methodology Improvement heuristics -Results ALNS - Algorithm Conclusion & Future research ALNS - example

EXAMPLE

Introduction Initial solution - K-TON Model Initial solution - exampli Methodology Improvement heuristics -Results ALNS - Algorithm Conclusion & Future research ALNS - example

EXAMPLE

FIGURE: v = 4, $t_d = 461.7$

INTRODUCTION INITIAL SOLUTION - K-TONN Model Initial solution - example Methodology Improvement heuristics -Results ALNS - Algorithm Conclusion & Future research ALNS - example

EXAMPLE

FIGURE: v = 4, $t_d = 462.47$

э.

INTRODUCTION INITIAL SOLUTION - K-TONN Model Initial solution - example **Methodology** Improvement heuristics - a Results ALNS - algorithm Conclusion & Future research ALNS - example

EXAMPLE

FIGURE: v = 4, $t_d = 464.09$

3

INTRODUCTION INITIAL SOLUTION - K-TONN Model Initial solution - example **Methodology** Improvement heuristics - . Results ALNS - algorithm Conclusion & Future research ALNS - example

EXAMPLE

INTRODUCTION INITIAL SOLUTION - K-TONN Model Initial solution - example **Methodology** Improvement heuristics - . Results ALNS - Algorithm Conclusion & Future research ALNS - example

EXAMPLE

BENCHMARK INSTANCES

- E-VRPTW instances of Schneider et al. [1]
 - 36 small instances 5, 10 and 15 users Exact \rightarrow MATLAB 2016B (MILP) & ALNS
 - 56 large instances -100 users and 21 stations ALNS
- Parameters for ALNS are presented in article and [2]
- Observed two different recharge policies
 - **Multiple** recharge policy allowing multiple recharges during the route, but no more than two consecutive recharges
 - Single recharge policy allowing only one recharge per route

Small instances

- Number of virtual stations (β) significantly influences the problem complexity
- ALNS was able to produce high quality solutions in much lesser time

Inst	Schneider et al. [1]			$\beta = 1$				$\beta = 2$			
	v	d	td	Nv	Nd	t _v	t _d	Nv	Nd	t_V	td
5(12)	17	2.27	29.65	12(11)	12(10)	0.06	0.04	12(12)	12(12)	94.33	11.17
10(12)	25	3.62	175.68	12(10)	12(10)	41.6	2.32	12(9)	10(8)	363.02	542.18
15(12)	32	4.33	1284.61	7(5)	7(4)	384	334.56	-	8(3)	-	540.93
Inst	Schneider et al. [1]			ALNSM				ALNSS			
	v	d	t _d	v	Δ_d	t _{vd}	Ns	v	Δ_d	t _{vd}	Ns
5	17	2.27	29.65	17	0.00	2.82	31	27	7.12	2.75	19
10	25	3.62	175.68	25	0.00	1.76	47	38	2.32	2.13	32
15	32	4.33	1284.61	32	-0.52	2.47	57	<u>41</u>	5.82	<u>1.96</u>	<u>32</u>

TABLE: Results on small E-VRPTW instances

T. ERDELIĆ ET AL. TRAN

TRANSCOM 2019 - May 29, 2019

LARGE INSTANCES

- Compared to the solutions of Schneider et al. [1]
 - ALNS with multiple recharge policy produced 3.6% more vehicles with difference in total traveled distance within 1%
 - ALNS with single recharge policy produced 17% more vehicles and increased total traveled distance in average by 1.79%

Inst	Schneider et al. [1]		ALNS _M				ALNSS				ALNSM	
	v	d	v	Δ_d	t _{vd}	Ns	v	Δ_d	t _{vd}	Ns	v	Δ_d
c1	96	9.43	99	-0.98	85.72	82	110	7.76	58.83	71	172	124.93
c2	32	5.13	32	0.00	90.05	31	32	0.27	62.08	29	44	147.88
r1	154	15.12	161	-1.48	91.42	199	84	7.23	36.92	69	236	56.72
r2	29	10.07	31	-0.91	182.15	42	34	0.22	105.04	31	42	70.69
rc1	105	11.28	108	0.43	62.21	131	-	-	-	-	178	91.52
rc2	25	9.18	26	0.35	128.74	42	34	-6.49	74.28	23	36	64.94

TABLE: Results on large E-VRPTW instances

(ロト (四) (三) (三) (三)

Conclusion & Future Research

• Conclusion

- Number of virtual stations (β) significantly influences the problem complexity when solving the problem exactly
- The applied ALNS for multiple recharge policy produced high-quality solutions in reasonable time
- Single recharge policy produced in average one additional vehicle per instance, but with lower number of charging stations visited - better approximates the real-life conditions
- Future research
 - Further improve the metaheuristic efficiency and computation time
 - Selection of available charging technology and partial recharge

INTRODUCTION Model Methodology Results Conclusion & Future research

Conclusion & Future research The End Literature

The End

Questions? terdelic@fpz.hr

T. Erdelić et al. TRANSCOM 2019 - May 29, 2019

イロト イヨト イヨト イヨト

15/16

E

LITERATURE I

- M. Schneider, A. Stenger, and D. Goeke, "The electric vehicle-routing problem with time windows and recharging stations," *Transportation Science*, vol. 48, no. 4, pp. 500–520, 2014. [Online]. Available: https://doi.org/10.1287/trsc.2013.0490
- [2] M. Keskin and B. Çatay, "Partial recharge strategies for the electric vehicle routing problem with time windows," *Transportation Research Part C: Emerging Technologies*, vol. 65, pp. 111 – 127, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0968090X16000322