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13th International Scientific Conference on Sustainable, Modern and
Safe Transport (TRANSCOM 2019), High Tatras, Novy Smokovec -

Grand Hotel Bellevue, Slovak Republic, May 29-31, 2019

May 29, 2019



Introduction
Model

Methodology
Results

Conclusion & Future research

Outline

Introduction

Model

Methodology

Results

Conclusion & Future research
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What is VRP?

Figure: Capacitated VRP - instance c106C15, [1]: 15 users
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Figure: CVRP: v = 1, td = 196.03
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What is VRP?

Figure: VRPTW: v = 2, td = 274.35
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Why electric vehicles?

• Pros
• Do not have local GHG emission
• Produce minimal noise
• Can be powered from renewable energy sources
• Independent on the fluctuating fossil oil prices
• Lower maintenance cost

• Cons

• Battery capacity → Range - 160 - 240 km → operational
limitations: frequent visits to charging stations

• Range anxiety
• Purchase price
• Battery lifetime and price
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What is E-VRP?

Figure: E-VRPTW: v = 3, td = 275.13
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E-VRPTW - Mixed integer linear program

• Schneider et al. [1], formulated E-VRPTW as MILP eqs. (1-9)

Table: E-VRPTW - MILP notations

Name Description
V = {1, . . . ,N} Set of geographically scattered customers

F Set of CSs for BEVs
F ′ Virtual set of CSs
β Number of virtual CSs per CS

0, N + 1 Depot
A = {(i , j)|i , j ∈ V0,N+1 ∪ F ′, i 6= j} Set of arcs

xij = {0, 1} Binary variable
C , Q Load and battery capacity
r , g Energy consumption and recharge rate

si , [ei , li ], i ∈ V0,N+1 ∪ F ′ Service time and time window
qi , i ∈ V0,N+1 ∪ F ′ Load demand

τi , ui , yi , i ∈ V0,N+1 ∪ F ′ Arrival time, remaining load and bat. cap.
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E-VRPTW - Mixed integer linear program

min
∑

j∈V∪F ′
x0j (1)

min
∑

i∈V0∪F ′,j∈VN+1∪F ′,i 6=j

dijxij (2)

(tij + si + l0)xij + τi − τj ≤ l0, ∀i ∈ V0, ∀j ∈ VN+1 ∪ F ′, i 6= j (3)

(tij + l0 + gQ)xij − gyi + τi − τj ≤ l0,∀i ∈ F ′, ∀j ∈ VN+1 ∪ F ′, i 6= j (4)

ej ≤ τj ≤ lj , ∀j ∈ V0,N+1 ∪ F ′ (5)

(qi + C)xij + uj − ui ≤ C , ∀i ∈ V0 ∪ F ′, ∀j ∈ VN+1 ∪ F ′, i 6= j (6)

0 ≤ uj ≤ C , ∀j ∈ V0,N+1 ∪ F ′ (7)

(rdij + Q)xij + yj − yi ≤ Q,∀j ∈ VN+1 ∪ F ′, ∀i ∈ V , i 6= j (8)

0 ≤ yj + rdijxij ≤ Q,∀j ∈ VN+1 ∪ F ′, ∀i ∈ 0 ∪ F ′, i 6= j (9)
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Initial solution

Algorithm 1 k-Time Oriented Nearest Neighbor Heuristic (k − TONNH)

1: Open new vehicle and set the current customer i to be the depot
2: while there are no unserved customers do
3: Initialize set C1 with unrouted customers that are reachable from i according to vehicle load

capacity, customer time window and depot time window
4: Initialize set C2 to be an empty set
5: for each customer j in C1 do
6: if there is enough energy to reach j from i and then the depot from j then
7: Add j to the C2
8: else if the segment from i to j and then from j to the depot is feasible by inserting

nearest CS between the depot and i and/or between i and j and/or between j and the
depot then

9: Add j to the C2 with appropriate placement of CS
10: end if
11: end for
12: if C2 is not empty then
13: From k customers in C2 that minimize the function δ1dij + δ2t

s
ij + δ3t

w
ij select one at

random, add it to the current vehicle and set the selected customer as customer i
14: else
15: Close the current vehicle, open new vehicle and set the current customer i to be the

depot
16: end if
17: end while

T. Erdelić et al. TRANSCOM 2019 - May 29, 2019 6/16



Introduction
Model

Methodology
Results

Conclusion & Future research

Initial solution - k-TONNH
Initial solution - example
Improvement heuristics - ALNS
ALNS - algorithm
ALNS - example

Example - k = 3

Figure: E-VRPTW - instance c106C15, [1]: 15 users
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Example - k = 3

Figure: First step - possible users
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Example - k = 3

Figure: First step - user added to vehicle
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Example - k = 3

Figure: Second step - possible users
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Figure: Second step - user added to vehicle
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Example - k = 3

Figure: Third step - possible users
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Example - k = 3

Figure: Final solution: v = 4, td = 497.91
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Improvement heuristics

• Adaptive Large Neighborhood Search (ALNS)
• Adaptive removal and insertion of users and stations in the

solution - removal and insertion operators

• The operators selected in next iterations are selected by
roulette wheel strategy based on their probability

• After each iteration for each removal and insertion operator
(except the GNRR) scores are added (σ3 ≤ σ2 ≤ σ1):

I σ1 if new best solution is found
I σ3 if new solution is better than the current solution
I σ2 if new solution is worse than the current solution but is

accepted due to the simulated annealing acceptance criteria
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Improvement heuristics

• Adaptive Large Neighborhood Search (ALNS)
• Adaptive removal and insertion of users and stations in the

solution - removal and insertion operators

• The operators selected in next iterations are selected by
roulette wheel strategy based on their probability

• After each iteration for each removal and insertion operator
(except the GNRR) scores are added (σ3 ≤ σ2 ≤ σ1):

I σ1 if new best solution is found
I σ3 if new solution is better than the current solution
I σ2 if new solution is worse than the current solution but is

accepted due to the simulated annealing acceptance criteria

Table: Removal and insertion operators

Removal Insertion
User Station Route User Station
random random greedy NRR greedy greedy
worst distance worst distance regret-2 best
worst time regret-3 greedy with com.
shaw time-based
proximity-based zone
demand-based
time-based
zone
Options: with preceding/succeeding station
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ALNS - algorithm

Algorithm 2 Adaptive Large Neighborhood Search (ALNS) [2]

1: while iteration limit not met do
2: Every NRR iterations select and perform route removal and customer insertion procedures

coupled with greedy station insertion to make the solution energy feasible
3: Every NSR iterations select and perform station removal and insertion procedures
4: Select and perform customer removal
5: if partial solution is energy infeasible then
6: Perform greedy station insertion to make the partial solution energy feasible
7: end if
8: if partial solution is energy feasible then
9: Select and perform customer insertion

10: end if
11: if solution is feasible then
12: Apply acceptance criteria to accept or reject the solution
13: end if
14: Every NC /NS iterations update operators weights and probabilities
15: end while
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Example

Figure: Initial solution: M = 4, D = 497.91
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Example

Figure: v = 4, td = 463.27
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Example

Figure: v = 4, td = 461.7

T. Erdelić et al. TRANSCOM 2019 - May 29, 2019 10/16



Introduction
Model

Methodology
Results

Conclusion & Future research

Initial solution - k-TONNH
Initial solution - example
Improvement heuristics - ALNS
ALNS - algorithm
ALNS - example

Example

Figure: v = 4, td = 462.47
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Example

Figure: v = 4, td = 464.09
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Figure: v = 4, td = 488.59
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Figure: v = 4, td = 492.71
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Benchmark instances

• E-VRPTW instances of Schneider et al. [1]
• 36 small instances - 5, 10 and 15 users - Exact → MATLAB

2016B (MILP) & ALNS
• 56 large instances -100 users and 21 stations - ALNS

• Parameters for ALNS are presented in article and [2]
• Observed two different recharge policies

• Multiple recharge policy - allowing multiple recharges during
the route, but no more than two consecutive recharges

• Single recharge policy - allowing only one recharge per route
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Small instances

• Number of virtual stations (β) significantly influences the
problem complexity

• ALNS was able to produce high quality solutions in much
lesser time

Table: Results on small E-VRPTW instances

Inst
Schneider et al. [1] β = 1 β = 2

v d td Nv Nd tv td Nv Nd tv td

5(12) 17 2.27 29.65 12(11) 12(10) 0.06 0.04 12(12) 12(12) 94.33 11.17

10(12) 25 3.62 175.68 12(10) 12(10) 41.6 2.32 12(9) 10(8) 363.02 542.18

15(12) 32 4.33 1284.61 7(5) 7(4) 384 334.56 − 8(3) − 540.93

Inst
Schneider et al. [1] ALNSM ALNSS

v d td v ∆d tvd Ns v ∆d tvd Ns

5 17 2.27 29.65 17 0.00 2.82 31 27 7.12 2.75 19

10 25 3.62 175.68 25 0.00 1.76 47 38 2.32 2.13 32

15 32 4.33 1284.61 32 −0.52 2.47 57 41 5.82 1.96 32
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Large instances

• Compared to the solutions of Schneider et al. [1]
• ALNS with multiple recharge policy produced 3.6% more

vehicles with difference in total traveled distance within 1%
• ALNS with single recharge policy produced 17% more vehicles

and increased total traveled distance in average by 1.79%

Table: Results on large E-VRPTW instances

Inst
Schneider et al. [1] ALNSM ALNSS ALNSinitM

v d v ∆d tvd Ns v ∆d tvd Ns v ∆d

c1 96 9.43 99 −0.98 85.72 82 110 7.76 58.83 71 172 124.93

c2 32 5.13 32 0.00 90.05 31 32 0.27 62.08 29 44 147.88

r1 154 15.12 161 −1.48 91.42 199 84 7.23 36.92 69 236 56.72

r2 29 10.07 31 −0.91 182.15 42 34 0.22 105.04 31 42 70.69

rc1 105 11.28 108 0.43 62.21 131 − − − − 178 91.52

rc2 25 9.18 26 0.35 128.74 42 34 −6.49 74.28 23 36 64.94
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Conclusion & Future research

• Conclusion
• Number of virtual stations (β) significantly influences the

problem complexity when solving the problem exactly
• The applied ALNS for multiple recharge policy produced

high-quality solutions in reasonable time
• Single recharge policy produced in average one additional

vehicle per instance, but with lower number of charging
stations visited - better approximates the real-life conditions

• Future research
• Further improve the metaheuristic efficiency and computation

time
• Selection of available charging technology and partial recharge
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[2] M. Keskin and B. Çatay, “Partial recharge strategies for the electric vehicle
routing problem with time windows,” Transportation Research Part C: Emerging
Technologies, vol. 65, pp. 111 – 127, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X16000322

https://doi.org/10.1287/trsc.2013.0490
http://www.sciencedirect.com/science/article/pii/S0968090X16000322

	Introduction
	Vehicle routing problem (VRP)
	Electric vehicles (EVs)
	Electric vehicle routing problem (E-VRP)

	Model
	E-VRPTW - Mixed integer linear program (MILP)

	Methodology
	Initial solution - k-TONNH
	Initial solution - example
	Improvement heuristics - ALNS
	ALNS - algorithm
	ALNS - example

	Results
	Benchmark instances
	Small instances
	Large instances

	Conclusion & Future research
	Conclusion & Future research
	The End
	Literature


