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ABSTRACT- A mobile robot must track its pose in the environment in order to perform any useful task. 
Problem of finding and tracking the mobile robot's pose is called localization, and can be global or local. In this 
paper we address the local localization or mobile robot pose tracking with prerequisites of known starting pose, 
mobile robot kinematics and world model. Pose tracking is mostly based on odometry, which has the problem of 
accumulating errors in an unbounded fashion. To overcome this problem sensor fusion is commonly used. 
Extended Kalman filter with two approaches has been used in our work for this purpose. First approach uses 
only sonar’s as additional sensors and the second one uses also the built in mobile robot so-called odometric 
device. Since occupancy grid maps are used, only sonar range measurement uncertainty has to be considered, 
unlike feature-based maps where an additional uncertainty regarding the feature/range reading assignment must 
be considered. Thus the numerical complexity is reduced. Proposed localization implementations are 
experimentally evaluated on a Pioneer 2DX mobile robot in two different set-ups. 
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INTRODUCTION 

Mobile robot localization is one of the very 
important tasks in navigation of autonomous 
mobile robots [1]. In an indoor environment with a 
flat floor plan it becomes a matter of estimating the 
mobile robot pose, i.e. Cartesian coordinates (x, y) 
of the robot (mobile robot position) and its 
orientation . Localization can be local or global. 
A commonly localization system has both modules 
implemented. Global localization is usually 
engaged for self-localization or for lost/kidnapped 
robot problem solving. Computational complexity 
of global localization algorithms is much greater 
then local localization algorithms. In a case of local 
localization only the offset from the known start 
pose can be obtained so only a small part of known 
world model has to be searched/compared to real 
robot measurements versus global localization 
which searches the whole known world model. 
Only so can the unknown mobile robot pose be 
determined inside of the known world model. 

Θ

Odometry is one of the most important means of 
mobile robot local localization. The disadvantage of 
this method is its unbounded error accumulation 
due to wheel slippage, floor roughness, etc. To 
decrease the odometry localization error, odometry 
is often used with additional sensors like a 
compass, gyro, laser or sonar range sensors, stereo 

or mono vision, etc [2]. Odometry and additional 
sensor information are mostly fused using Kalman 
filtering techniques [10]. One of them is the 
Extended Kalman filter (EKF) [4, 9]. The state that 
has to be estimated using an EKF is the mobile 
robot pose. A mobile robot kinematics model is 
firstly used to predict new mobile robot pose, which 
is then combined with an occupancy grid map to 
predict sonar range measurements. Comparing 
predicted sonar range measurements with real sonar 
range measurements a mobile robot pose correction 
can be obtained. So the odometry method 
unbounded errors can be significantly reduced and 
estimated pose can be used between absolute pose 
updates based on global localization methods.  

The EKF is here used to match recent sensory 
information against prior knowledge of the 
environment, i.e. a world model. Due to problems 
with bad sonar placement on our mobile robot [5], a 
sonar based local map with high quality can't be 
determined and so a technique similar as in [9] is 
adopted that can find direct correspondences 
between mobile robot sensor measurements and 
sensor measurements predicted from a world 
model. Using a threshold comparison between 
predicted and real sonar range measurements false 
sonar range measurements can be easily rejected.  

Mobile robot pose estimate accuracy depends in 
this approach on the world model and sensor 
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measurement quality. Occupancy grid world model 
quality is limited by used grid cell.  Smaller grid 
cell sizes give a better pose estimate but memory 
consumption and computational time needed for 
sonar range measurement prediction increases. To 
improve the pose estimate without significant 
memory consumption and computational time 
increase, an odometric sensor is built in many 
mobile robots and it is included as an additional 
sensor into our EKF localization framework [7]. Its 
advantage is the more frequent access to wheel 
speed measurements because it’s usually 
implemented in the mobile robot micro controller 
used as an interface between the mobile robot 
sensors and mobile robot control computer i.e. low 
level motor/sensor control and high level 
navigational tasks. 

The paper is organized as follows. The section 
MOBILE ROBOT MODEL presents used mobile 
robot kinematic model with brief description of its 
calibration and section EKF BASED 
LOCALIZATION describes our firstly imple-
mented EKF localization solution. Then section 
IMPROVED EKF BASED LOCALIZATION 
presents the EKF localization, which uses the 
mobile robot odometric device. Experiment 
description and experimental results are given in 
section EXPERIMENTAL RESULTS. The paper 
ends with CONCLUSION section. 
 
MOBILE ROBOT MODEL 

Mobile robot used in our experiments is a three-
wheeled robot. Two front wheels are drive wheels 
with encoder mounted on them and the third wheel 
is a castor wheel needed for robot stability. Drive 
wheels can be controlled independently from each 
other. The encoders can measure the speed or the 
travelled distance of the wheel. We are using 
encoders to measure the speed of the wheels. 
Kinematics of used three wheeled mobile robot are 
given by the following relations (Figure 1): 
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Figure 1. The mobile robot kinematics. 
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 and  coordinates of the centre 
of axle [mm];  robot translation speed 
[mm/s];  sampling time [s];  angle between 
the vehicle and x-axis [ ];  and  
velocities of the left and right wheel, respectively 
[mm/s]; 

( )y k
( )v kt

T ( )kΘ
(Lv° )k ( )Rv k

ω  and ( )R kω  angular velocities of the 
left and right wheel, respectively [rad/s];  radius 
of the two wheels [mm], and  vehicle axle length 
[mm]. It is assumed that the wheels have the same 
radius. Sampling time T  was 0.1 [s]. Equations (1) 
to (7) describe the basic odometry pose tracking 
model and results obtained by simply propagating 
these equations through time are marked as 
uncalibrated odometry (UO). In order to 
compensate the systematic error regarding the 
unacquaintance of the exact wheel radius and the 
unacquaintance of the exact axle length we expand 
Equations (6) and (7) with three additional 
parameters [3]: 
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where parameters  and  compensate the 
unacquaintance of the exact wheel radius and 
parameter  the unacquaintance of the exact axle 
length. Thus the replacement of the above-
mentioned equations yields the calibrated odometry 
(CO), which is also used as the motion model for 
both EKF implementations. 

1k 2k

3k

Calibration parameters values were determined 
by offline optimisation of two experiment data. In 
the first experiment robot moved straight ahead, 
and in the second experiment it turned in place for 
180 degrees. Exact final pose, wheel speeds and 
sampling time were recorded during the 
experiments. This recorded data combined with the 
above described mobile robot kinematics model 
were used to iteratively compute final robot pose in 
an optimisation function for the MATLAB 
Optimisation toolbox. Optimisation criterion was to 
minimise the difference between estimated and 
measured exact final orientation. A more detailed 
explanation of used systematic error compensation 



and parameter value determination through 
optimisation can be found in [6]. 

 
EKF BASED LOCALIZATION 

Basic idea of a general Kalman filter approach is 
to use a motion model to predict the process state in 
a time update step and then to use additional sensor 
(in our case sonar) measurements to correct 
predicted process state in a measurement update 
step. Block diagram of our EKF implementation is 
given in Figure 2. Odometric device measurement 
can be included into the localization framework or 
excluded and is so presented with a dashed line. 
First implementation uses only sonar sensors and 
the second one uses also the built in odometric 
device (shown with the dashed line box in Figure 2) 
as an additional sensor. 
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Figure 2. Block diagram of our both EKF 
localization approaches. 

 
 Detailed explanation of firstly implemented 

EKF localization can be found in [4]. The motion 
model represents the way in which the current state 
(in our case the mobile robot pose) is derived from 
the previous state. State vector is in our case 
expressed as the mobile robot pose, 

, with respect to a 
global coordinate frame. Each state vector  has 
a degree of uncertainty that is represented as a 3 by 
3 covariance matrix . Control input, u , 
represents the movement commands which are 
acted upon by the mobile robot to move it from 
time step  to . In our implementation control 
input represents rotation through angle 
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followed by a translation through distance : 
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The state transition function, , uses the state 
vector and control input to compute the state vector 
at the next time step: 
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where  represents unpredictable noise. The 
noise covariance, , was modelled under the 
assumption that there are two independent sources 
of error, angular and translational and so the 
uncertainty in 
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where ( )k∇f  denotes the Jacobian used to translate 
the uncertainty in ( )k∆Θ

2

 and  into 
uncertainty in x , 

( )D k
( )k σ∆Θ  and 2

Dσ  are variances of 
(k)∆Θ  and , respectively. The uncertainty in 

position and orientation  must also be 
translated but from time step  to k : 
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where '( )k∇f  denotes the Jacobian used to 
translate the uncertainty P  from time step  to ( )k k

1k + . EKF measurement update step is based on a 
measurement function that computes the range 
between the mobile robot and a detected obstacle 
[9]: 
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where ( , )i i ix y=p  denotes the point (occupied 
cell) in the world model detected by the i th sonar. 
Equations for the EKF measurement update step are 
then: 
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where  presents the innovation covariance 
matrix, 

( )kS
( )k∇h

( )
1)

 measurement Jacobian,  
measurement noise matrix (diagonal matrix with 
the  noise variance values on the diagonal), 

( )kR

ir k
(k +z  real accepted sonar range measurements, 
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 predicted accepted sonar range 
measurements and ( 1k +K  Kalman gain. To 
separate outliers or noisy sonar range 
measurements, predicted measurements are 
compared to real measurements and only 
measurements that differ less than a defined 
threshold are used for mobile robot pose correction 
in Equation (18). 

( )
( )
p

s

k
k


= 
 

z
z

( )p k

1

2

3

u

u

u

x d
k y

d

+ 
= +
 Θ + 

d
x y

,   ]Tu u uΘ

 
IMPROVED EKF BASED LOCALIZATION 

As mentioned before most mobile robots are 
equipped with an odometric device that can 
measure the mobile robot displacement with a 
smaller sampling time then the calibrated mobile 
robot kinematics model in the state transition 
function (11). The disadvantage of the above-
described EKF implementation is that it doesn’t use 
that additional sensor. Also input and sonar noise 
covariance are constant values. It’s well known that 
poor knowledge off these noise statistics can 
seriously degrade the Kalman filter performance. 
To overcome a part of these disadvantages input 
control noise covariance matrix computation can be 
expanded into Equation (22) where 2

ησ  presents 
input noise covariance parameter, which can be 
adaptively computed during mobile robot motion 
[7]. 

To include the odometric device measurement 
data, the measurement vector  must be 
expanded and becomes: 
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
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where  represents accepted real sonar 
measurements and z  mobile robot pose 
updated with the displacement, from previous 
odometric device pose update through the EKF, 
measured with the odometric device: 
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where  represents mobile robot displacement 
along 

1

-axis,  along -axis, and  orientation 
change. Pose [  denotes pose where 

previous sonar range measurements were available 
i.e. pose where last odometric device pose 
correction due EKF was done. Measurement 
prediction vector  becomes: 
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where represents accepted predicted sonar 
measurements and h predicted mobile robot 
pose computed using above described calibrated 
kinematics model. Measurement noise matrix, 

, has also a diagonal form but is expanded to 
include odometric device measurement noise i.e. it 
has three additional values (x, y, and orientation 
pose change measurement noise part). 

( )s kh
( )k

( )kR

Odometric device pose is updated every time 
new sonar range measurements are available and 
pose correction using Equation (18) is computed. 
Between these updates it measures the mobile robot 
displacement to compare it with the predicted one 
computed using the state transition function (11). 

 
EXPERIMENTAL RESULTS 

Described EKF approaches were tested in 
parallel on a Pioneer 2DX mobile robot from 
ActivMedia Robotics. Two series of experiments 
were made to evaluate described localization 
approaches. The first one was performed in our 
department corridor, and the second one in a larger 
room of our department. Main characteristic of the 
first experiment world, shown in Figure 3, is that it 
has little features along the axis through the 
corridor middle and used occupancy grid model is 
accurate. The mobile robot starts in the right 
corridor end and travels to its left end. Main 
characteristic of the second one, shown in Figure 4, 
is that it has enough features along both axis but 
used occupancy grid model is less accurate because 
this room is full of easily movable furniture (like 
chairs, tables, trash baskets, etc.) which never stays 
at the same place for a long time. In this experiment 
set-up the mobile robot starts in the left room and 
has to reach the right   room.  These two set-ups 
enable us to test the local localization algorithm 
performance in an environment  with  little  features 
3 3
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Figure. 4. Model of our department seminar 

room used for second experiment. 
 

and in a badly or incompletely modelled 
environment. Both experiment set-ups traversed 
paths (Figures 3 and 4) are presented by a line with 
arrows showing mobile robot motion succession. A 
gradient navigation module [8] is used for mobile 
robot control, i.e. for path planning and local 
obstacles avoidance. 

New sonar’s range measurements  are 
available every three time steps on used mobile 
robot. Raw sonar data  and predicted 
measurements  differ because real mobile 
robot pose is not exactly known and due to sonar 
measurement noise, occlusions, specular 
reflections, outliers, and used occupancy grid 
inaccuracy. So raw measurements  were first 
compared to predicted measurements  and 
only those measurements with difference under a 
certain threshold are accepted. Used threshold is set 
to 6 cells. That means, in a grid map with cell size 
of 100 [mm] x 100 [mm], as in our case, 
measurements with difference less then 600 [mm] 
are accepted. Obtained results are presented in 
Figures 5 and 6 for the first experiment set-up and 
in Figures 7 and 8 for the second experiment set-up. 
In the first experiment set-up mobile robot 
orientation was the whole time around 180 degrees 
so Figure 6 shows the mobile robot orientation 
estimation during the whole experiment. Second 
experiment set-up has a greater orientation change 
(experiment begins with orientation 270, and ends 
with 90 degrees). To achieve a more clearly result 
presentation, only orientation estimation results at 
the experiment end are shown in Figure 8. Exact 
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Figure. 3. Model of our department corridor room 

used for first experiment. 
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Figure 5. Position estimation performance 
   in the first experiment. 

Figure 7. Position estimation performance 
in the second experiment. 
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    in the first experiment. 
Figure 8. Orientation estimation performance 

in the second experiment. 
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