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Department of Control and Computer Engineering in Automation,

Faculty of Electrical Engineering and Computing,
University of Zagreb,

HR-10000 Zagreb, Croatia
{edouard.ivanjko,ivan.petrovic,kristijan.macek}@fer.hr

Abstract

In this paper we address one of the major problems
of mobile robots navigation, the creation of a map from
local sensor data collected as the robot moves around
an unknown environment. Map building is the prob-
lem of generating models of robot environments from
sensor data and can be often referred as a concurrent
mapping and localization problem. That is to build a
consistent map, the mobile robot has to know its pose.
We present here three approaches to create occupancy
grid maps from sonar’s data and suggest a simple so-
lution to improve the mapping quality in cases of irreg-
ular disposition of the sonars. The proposed solution
has been tested on the mobile robot Pioneer 2DX.

1 Introduction

Robotic mapping has been a highly active re-
search area in robotics and artificial intelligence for
past two decades. It addresses the problem of ac-
quiring/generating spatial models of physical environ-
ments through mobile robots collecting local sensor
data. The sensors that are mostly used are sonars,
laser range finders and/or cameras [1]. The mapping
problem contains also a localization problem. If the
mobile robot doesn’t know its location, it can’t nav-
igate effectively and achieve goals. In this paper the
localization problem is solved using dead reckoning im-
proved by a Kalman Filter [2]. Many types of the
maps can be used for the robot navigation and lo-
calization. Maps can be based on topological (con-
nection) or metric (distance) information, or a com-
bination of the two [3]. Metric maps can be further
refined by whether they use features or rely on dense
surface information that doesn’t distinguish features.
The later approach has been applied in this paper.
Namely, we have used occupancy grid maps, which

have become the dominant paradigm for environment
modeling in mobile robotics [4]. An occupancy grid
map presents a spatial representation of robot envi-
ronment using a fine-grained, metric grid of variables
that reflect the occupancy of the environments. Once
acquired, it facilitates various key aspects of mobile
robot navigation, such as localization, path planning
and collision avoidance [1, 5, 6].

2 Robot Model

Mobile robot used in our experiments is a three-
wheeled robot. Two front wheels are drive wheels with
encoder mounted on them and the third wheel is a
castor wheel needed for robot stability. Drive wheels
can be controlled independently from each other. The
kinematics of the mobile robot are given by the fol-
lowing relations (Figure 1):

x(k + 1) = x(k) + vt(k) · T · cos Θ(k + 1), (1)

y(k + 1) = y(k) + vt(k) · T · sinΘ(k + 1), (2)

Θ(k + 1) = Θ(k) + ω(k) · T, (3)

vt(k) =
vL(k) + vR(k)

2
=

ωL(k)R + ωR(k)R
2

, (4)

ω(k) =
vR(k)− vL(k)

b
=

ωR(k)R− ωL(k)R
b

, (5)

where are: x (k) and y(k) coordinates of the center of
axle [mm]; vt(k) robot translation speed [mm/s]; T
sampling time [s]; Θ(k) angle between the vehicle and
x-axis [◦]; vL(k) and vR(k) velocities of the left and
right wheel, respectively [mm/s]; ωL(k) and ωR(k) an-
gular velocities of the left and right wheel, respectively
[rad/s]; R radius of the two wheels [mm], and b vehicle
axle length [mm]. It is assumed that both wheels have
equal radius. In order to compensate the systematic
error regarding the unacquaintance of the exact wheel
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Figure 1: The Mobile Robot Kinematics.

radius and the unacquaintance of the exact axle length
we expand the equations 4 and 5 with three additional
parameters:

vt(k) =
k1 · vL(k) + k2 · vR(k)

2
, (6)

ω(k) =
k2 · vR(k)− k1 · vL(k)

k3 · b , (7)

where parameters k1 and k2 compensate the unac-
quaintance of the exact wheel radius and parameter
k3 the unacquaintance of the exact axle length. De-
tailed explanation of used systematic error compensa-
tion and parameter value determination can be found
in [7].

3 Dead-reckoning improvement by the
Kalman Filter

Kalman filtering is a well-known technique for state
and parameter estimations [8]. It is a recursive proce-
dure that uses sequential sets of measurement. Prior
knowledge of the state is expressed by the covari-
ance matrix and it is improved at each step by tak-
ing prior estimates and new data for the subsequent
state estimation. Using the Kalman Filter for local-
ization [9] and mapping [3] is a common practice in
mobile robotics. In our approach here the measure-
ment vector used in localization is composed of the
two translational speeds of left and right wheels and
the mobile robot orientation measured by a compass
(added to improve the orientation estimate in the x-y
plane) [2]. These values are then used as input values
for above described mobile robot kinematics model.
The state estimate is denoted by

∧
x, z is the measure-

ment vector, r is the residual vector and
∧
z is the mea-

surement estimate:

∧
z =

∧
x =

[
∧
vL

∧
vR

∧
Θ

]T

,

z =
[

vL vR Θc

]T
, r = z− ∧

z . (8)

Kalman Filter consists of two different steps: propa-
gation and update. The equations for the propaga-
tion step are:

∧
xk+1/k = Φ · ∧xk/k, (9)

Pk+1/k = Φ · Pk/k · ΦT + Q. (10)

The equations for the update step are:

K = Pk+1/k

(
Pk+1/k + R

)−1
, (11)

∧
xk+1/k+1 =

∧
xk+1/k + K · r, (12)

Pk+1/k+1 = (I −K)Pk+1/k. (13)

In the above equations Φ is the system matrix, P is
the error covariance matrix, Q is the system noise co-
variance matrix, K is the Kalman gain matrix and R is
the measurement noise covariance matrix. Satisfying
the above given robot model and applying the results
from calibration discussed earlier, the system matrix
Φ is given by:

Φ =




k1 0 0
0 k2 0

−T · k1

k3 · b ·
180
π

T · k2

k3 · b ·
180
π

1


 . (14)

4 Map Building

As mentioned above we are using occupancy grid
maps. In mobile robotics, an occupancy grid is a two-
dimensional tessellation of the environment into a grid
G where each cell Cij holds a part of environmental
information [10]. The information can be of proba-
bilistic or evidential character and is gathered with
sensors (in our case sonars) mounted on the mobile
robot. In most cases an occupancy grid is created by
a robot exploring the environment, updating the grid
recursively while moving. Often the updated cell in-
formation is just a number that represents the belief
that this part of the environment is occupied by an
object or free. We tested three strategies of build-
ing an occupancy grid map. The Bayesian approach,
the Dempster-Shafer theory of evidence and Fuzzy set
theory. The sonar sensor models used for these ap-
proaches are described in [4, 10].



4.1 The Bayesian Grid Map

The Bayesian approach of building an occupancy
grid G relies on Bayes rule:

P (Ai |B ) =
P (Ai ∩B)

P (B)
. (15)

For a grid map building purpose the event Ai plays
the role of a cell being occupied or not. Each cell Cij

of the grid map G is therefore associated with a binary
random variable Sij with states (O)cupied or (E)mpty
for which:

P (Sij = O) + P (Sij = E) = 1. (16)

Each cell Cij in the Bayesian grid map has a state
probability pij associated and is initialized as follows
(usually the state probability value of 0.5 means that
the cell occupancy value is unknown, for values bigger
then 0.5 the cell is occupied, and for values smaller
then 0.5 the cell is empty):

pij := 0.5 ∀Cij ∈ G. (17)

When the Bayes grid map is updated using new sensor
measurements, for each cell Cij , which lies within the
main lobe of the sensor, reading R the state probability
value pij is updated according to:

pij := P (R|Sij=O )pij

P (R|Sij=O )pij+[1−P (R|Sij=0)][1−pij ]
, (18)

where P (R |Sij = O ) represents the sensor model [4,
10]. Using this representation the same approach can
be used with different sensors.

4.2 Dempster-Shafer Grid Map

In the Dempster-Shafer theory of evidence, a frame
of discernment (FOD), denoted Θ is defined to be a
finite set of mutually exclusive and exhaustive propo-
sitions. In the grid map case, each cell Cij in the
grid map G is characterized by two states (E)mpty
or (O)ccupied, and hence the FOD of grid cell Cij is
given by:

Θij = {E, O} . (19)

Furthermore the Dempster-Shafer theory relies on a
basic probability assignment (bpa) function:

mG
ij : 2Θij → [0, 1] , (20)

where 2Θij is the power set of Θij , or in our case:

2Θij = {0, E,O, {E, O}} . (21)

The Dempster-Shafer grid map is initialized as follows:

mG
ij(O):=0, mG

ij(E):=0, mG
ij({O,E}):=1 ∀Cij∈G. (22)

When the Dempster-Shafer grid map is updated us-
ing new sensor measurements, for each cell Cij which
lies within the main lobe of the sensor reading R the
bpa function values mG

ij (O) and mG
ij (E ) are updated

according to:

mG
ij(O):=

mG
ij(O)mR

ij(O)+mG
ij(O)mR

ij({O,E})+mG
ij({O,E})mR

ij(O)

1−mG
ij(E)mR

ij(O)−mG
ij(O)mR

ij(E)
(23)

mG
ij(E):=

mG
ij(E)mR

ij(E)+mG
ij(E)mR

ij({O,E})+mG
ij({O,E})mR

ij(E)

1−mG
ij(E)mR

ij(O)−mG
ij(O)mR

ij(E)
(24)

where mR
ij (O) and mR

ij (E ) represent the sensor
model [10]. Since this type of map stores two values
for a cell (evidence that a cell is being occupied and
evidence that a cell is being empty) the memory con-
sumption and computation cost is doubled compared
to the Bayesian map approach.

4.3 Fuzzy Grid Map

When applying fuzzy set theory to grid map build-
ing, two fuzzy sets (O)ccupied and (E)mpty are de-
fined. The defined fuzzy sets are complementary, i.e.
for a given grid cell Cij , partial membership to O and
E is possible. The degree, with which the grid cells
belong to E and O , is measured by two membership
functions:

µG
O : G → [0, 1] , µG

E : G → [0, 1]. (25)

The Fuzzy grid map is initialized with no membership
to O and E :

µG
O(Cij) := 0, µG

E(Cij) := 0, ∀Cij ∈ G. (26)

When the Fuzzy grid map is updated using new sensor
measurements, for each cell Cij which lies within the
main lobe of the sensor reading O the membership
functions µG

O(Cij ) and µG
E (Cij ) are updated using the

following algebraic sums:

µG
O(Cij) := µG

O(Cij)+µR
O(Cij)−µG

O(Cij)µR
O(Cij) (27)

µG
E(Cij) := µG

E(Cij)+µR
E(Cij)−µG

E(Cij)µR
E(Cij) (28)

where µR
O(Cij ) and µR

E (Cij ) represent the appropriate
sensor models [10]. To track safe areas for the mobile
robot to operate in a refined fuzzy set S is formed.



The membership function µG
S (Cij ) of the safe fuzzy

set is defined as:

µG
S (Cij) = (µG

S (Cij))2
[
1− µG

O(Cij)
]
µG

C(Cij),
∀Cij ∈ G, (29)

with µG
C (Cij ) defined as:

µG
C(Cij) =

[
1− µG

E(Cij)µG
O(Cij)

]
[
1− (

1− µG
E(Cij)

) (
1− µG

O(Cij)
)]

.
(30)

This type of map requires two values per cell, and with
the computation of the safe fuzzy set S one more value
is needed. This makes this type of map for one degree
more computational and memory consuming than the
Dempster-Shafer map.

5 Sonar Data Corrections

Mobile robots with cylindrical shape have usually
regular angular distribution of the sonars on its body.
However, mobile robots with more complex shapes of-
ten have irregular distribution of the sonars, which can
cause some problems in map building based on sonar
data. We have been using the Pioneer 2DX mobile
robot from ActivMedia Robotics, which has 16 sonars
grouped in four groups (Figure 2): i) six front sonars,
ii) two left side sonars, iii) six rear sonars and iv) two
right side sonars. Thus, there are areas of about 40
degrees angular space without any sonars. This re-
sults in a very bad environment representation in a
local occupancy grid map. Figure 3 presents a local
occupancy map when the mobile robot was placed in
the leftmost position of a corridor (Figure 4). The
light areas in the Figure 3 present empty space, dark
areas present occupied space and gray areas unknown
space. The local occupancy map should present walls
on three sides and a open space in the front of the
mobile robot. To compensate the bad sonar disposi-

Figure 2: Pioneer 2DX Mobile Robot.

tion a bounding box has been created using readings

Bayesian

Figure 3: Local occupancy map when robot is in the
leftmost position of the corridor given in Figure 4.

Figure 4: World model for the mapping experiments.

of the sonars that are perpendicular to the appropri-
ate walls. This means that two front sonars have been
used for the creation of the front side of the bounding
box, two left side sonars for the creation of the left
side of the bounding box and so on. The creation of
a bounding box is illustrated in Figure 5. The circle
in the middle is the mobile robot, the beams present
the sonar main lobes and the rectangle around the mo-
bile robot the created bounding box. The bad sonar
disposition can be easily observed. At the front and
rear sides of the robot there are no problems, but at
the lateral sides there are insufficient data to ensure a
good mapping quality. Readings of the sonars, which
are not used for bounding box creation, are then mod-
ified to be in the bounding box. Modified values are
marked by a black dot. Thus, measured ranges that
fall outside the bounding box are modified to be on the
bounding box border. It can be noticed that the modi-
fied value is the minimum value between the measured
range and the bounding box modification. Using the
proposed bounding box modification, local occupancy
map obtained under equal condition as the map given
in Figure 3 is shown in Figure 6. It can be seen that
the local occupancy map now much better presents
the surrounding walls and the open space in the front.
The presented local occupancy maps are generated us-
ing the Bayesian approach. The same results were
achieved with the other two mapping methods.



Figure 5: Bounding box creation.

Bayesian

Figure 6: Local occupancy map when robot is in the
leftmost position of the corridor given in Figure 4 and
when bounding box modification is applied.

6 Results

The described localization and mapping methods
have been tested using the Pioneer 2DX mobile robot.
The world model used for the experiments is shown in
Figure 4. For each approach two separate experiments
were made. One without the bounding box modifica-
tion and one using the bounding box modification. In
the first one sonar range readings greater then 3000
[mm] were rejected. This leads to the rejection of many
sonar readings. The achieved results are presented in
the Figures 7 to 12. Comparing the obtained results
it can be seen that the bounding box modification im-
proves the mapping, especially regarding the corridor
corner areas. The bad side-effect is that the open-
ings recognition is deteriorated. This negative effect
isn’t so expressive in the Bayes approach. In this case
we achieved the best improvement. The side-effect is
probably caused by the fact that bounding box has
been created from the local data only. Therefore, past
sonar readings have to be taken into consideration too.
Certain distortion of all maps can be noticed in the
Figures 7-12. This is because algorithms for robot

Bayesian

Figure 7: Corridor map using the Bayes approach.

Bayesian

Figure 8: Corridor map using Bayes approach and the
bounding box modification.

tracking have not been yet implemented.

7 Conclusion and Future Work

We address the problem of on-line occupancy grid
map building based on sonar data. Particular atten-
tion is paid to the problems caused by irregular dis-
position of the sonars on the robot body. A simple ef-
fective solution, based on bounding box creation, has
been found for the alleviation of these problems. The
solution was tested on the mobile robot Pioneer 2DX.
Considerable improvements have been achieved in the
Bayes and Dempster-Shafer mapping approaches. A
negative side-effect regarding the opening detection
deterioration was observed. In order to reduce this
side-effect we plan to include past sonar readings in
the creation of the bounding box. To improve the lo-
calization we plan to implement an Extended Kalman
Filter for fusion of dead-reckoning and sonar data.



Dempster-Shafer

Figure 9: Corridor map using the Dempster-Shafer
approach.

Dempster-Shafer

Figure 10: Corridor map using Dempster-Shafer ap-
proach and the bounding box modification.

Fuzzy

Figure 11: Corridor map using the Fuzzy approach.

Fuzzy

Figure 12: Corridor map using Fuzzy approach and
the bounding box modification.
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